# Synthesis of 5'-C- and 2'-O-(Bromoalkyl)-Substituted Ribonucleoside Phosphoramidites for the Post-synthetic Functionalization of Oligonucleotides on Solid Support

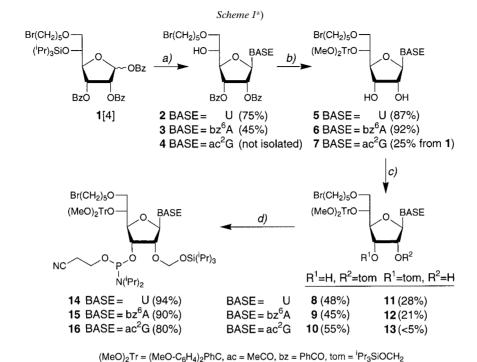
by Xiaolin Wu and Stefan Pitsch\*

Laboratorium für Organische Chemie, ETH-Zentrum, Universitätstr. 16, CH-8092 Zürich

Dedicated to Prof. Dr. Frank Seela on the occasion of his 60th birthday

The preparation of building blocks for the incorporation of 6'-O-(5-bromopentyl)-substituted  $\beta$ -D-allofuranosylnucleosides and 2'-O-(3-bromopropoxy)methyl]-substituted ribonucleosides into oligonucleotide sequences is presented (S-chemes 1 and 2). These reactive building blocks can be modified with a variety of soft nucleophiles while the (fully protected) sequence is still attached to the solid support. As an example of this strategy, we carried out some preliminary solid-phase substitution and conjugation reactions with DNA sequences containing a 2'-O-(3-bromopropoxy)methyl]-substituted ribonucleoside (S-cheme 3) and determined the pairing properties of duplexes obtained therefrom.

1. Introduction. – Oligonucleotide conjugates and functionalized oligonucleotides are versatile tools for structural, biological, and biophysical studies. To access a variety of such oligonucleotide analogues within a short time, several solid-phase functionalization strategies have been developed. They are based on reactive, prefunctionalized building blocks that, after their incorporation into oligonucleotides, can be functionalized with a variety of different groups. The first examples of such 'convertible nucleosides' carried reactive nucleobases that, during deprotection with alkylamines, afforded N-alkyl-substituted nucleosides [1]. Meanwhile, a few base analogues carrying suitably protected reactive side chains have been developed; after liberation of their reactive sites, these analogues can be modified, while the sequence is still fully protected and attached to the solid support [2]. In this context, we recently reported a method for the functionalization of the sugar moiety of oligonucleotides on the solid support. Our approach was based on the incorporation of a 6'-O-(bromopentyl)substituted allofuranosyl-cytosine phosphoramidite into sequences followed by substitution of the Br-atom with a variety of soft nucleophiles [3]. Here we describe the synthesis of the analogous 6'-O-(bromopentyl)-substituted allofuranosyl phosphoramidites containing the three other canonical nucleobases uracil, adenine, and guanosine.


Meanwhile, we have extended our concept and have prepared reactive 2'-O-[(3-bromopropoxy)methyl]-substituted ribonucleoside building blocks that allow the introduction of additional functionalities at the 2'-O-position of oligonucleotides. In this first communication, we report the synthesis of such phosphoramidites containing the four canonical nucleobases and base-pairing properties of some derivatives obtained therefrom.

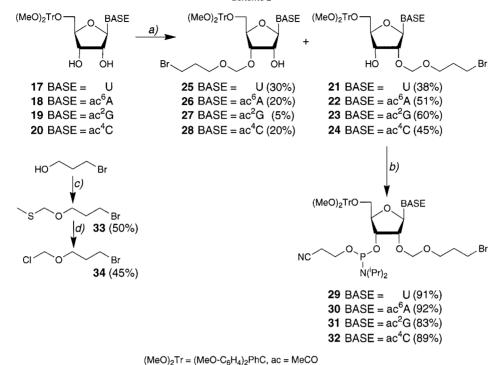
**2. Results and Discussion.** – 2.1. Synthesis of 6'-O-(Bromopentyl)-Substituted Allofuranosyl Phosphoramidites. The 6'-O-(bromopentyl)-substituted  $\beta$ -D-allofuranosyl nucleoside building blocks containing the nucleobases adenine, uracil, and guanine were prepared from the prefunctionalized sugar building block **1** in analogy to the synthesis of the corresponding cytosine-containing phosphoramidite that has been reported in [3][4] (Scheme 1).

The nucleosidation of 1 was carried out under Vorbrüggen conditions with the insitu trimethylsilylated nucleobases uracil,  $N^6$ -benzoyladenine, and  $N^2$ -acetylguanine, respectively; after aqueous workup, the products were desilylated, affording the nucleosides 2, 3, and 4, respectively. Nucleoside formation with uracil proceeded smoothly in the presence of SnCl<sub>4</sub> in MeCN [5], and after treatment of the crude product with HF and HCl in H<sub>2</sub>O/MeCN according to [4], the desilylated derivative 2 was obtained in a yield of 75%. With  $N^6$ -benzoyladenine, a mixture of products was obtained under a variety of nucleosidation and deprotection conditions. Nevertheless, the nucleoside 3 could be isolated in a moderate yield of 45% by performing the nucleosidation reaction with SnCl<sub>4</sub> in MeCN [5] and the desilylation with CF<sub>3</sub>COOH/  $H_2O$ . The nucleosidation of 1 with  $N^2$ -acetylguanine afforded, under various conditions, always a mixture of the two isomeric  $N^9$ - and  $N^7$ -connected nucleosides, which could not be separated. The best  $N^9/N^7$  ratio was obtained with Me<sub>3</sub>Si-OTf in (CH<sub>2</sub>Cl)<sub>2</sub> according to [5]. After desilvlation of the crude products with HF and HCl in H<sub>2</sub>O/ MeCN [4], again an unseparable mixture of isomers was obtained in a moderate yield of 40%. The dimethoxytritylation of the intermediates 2-4, respectively, was carried out with (MeO)<sub>2</sub>Tr-Cl in the presence of AgNO<sub>3</sub> and sym-collidine (=2,4,6trimethylpyridine) according to [4][6]. Without purification, the intermediates were then directly O-debenzovlated under standard conditions with NaOH in THF/MeOH/ H<sub>2</sub>O [7]. The dimethoxytritylated uracil and adenine nucleosides 5 and 6 were obtained in good yields of 87 and 92%, respectively. At this stage, the two regioisomeric N<sup>9</sup>- and  $N^7$ -connected guanine nucleosides 7 could be separated by chromatography (silica gel) and were isolated in yields of 25 and 11%, respectively (based on 1)<sup>1</sup>). Introduction of the 2'-O-[(triisopropylsilyloxy)methyl] (=tom) protecting group into the three nucleosides was carried out under our general conditions, by first forming a cyclic dibutyltin derivative with Bu<sub>2</sub>SnCl<sub>2</sub>/iPr<sub>2</sub>NEt and then treatment with tom-Cl at 80° [4][5][9]. Under these conditions, the three 2'-O-alkylated nucleosides 8-10 were obtained as major products that could be separated by chromatography (silica gel) from the corresponding 3'-O-alkylated regioisomers  $11-13^2$ ). Finally, the nucleosides 8-10 were transformed into the phosphoramidites 14-16 according to standard procedures [5].

<sup>1)</sup> The connection of the nucleobase was determined by <sup>13</sup>C-NMR spectroscopy according to [8].

The correct position of the tom group was determined by ¹H-NMR spectroscopy according to [5]. Generally, within every pair of 5'-O-dimethoxytritylated, base-protected nucleosides with 2',3'-O-form-aldehyde acetal-derived substituents known so far, we observed the following relationships: the 2'-O-alkylated nucleosides are less polar and elute faster on chromatography (silica gel) than the corresponding 3'-O-alkylated regioisomers; the H-C(1') signals of the former are further downfield, and the coupling constants between H-C(1')/H-C(2') are smaller than the corresponding values of the latter.



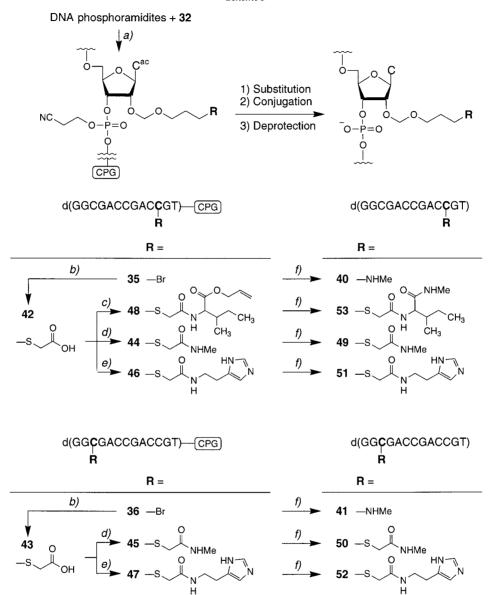

a) For **2**: 1) uracil, bis(trimethylsilyl)acetamide (BSA), then SnCl<sub>4</sub>, 2) HF, HCl in H<sub>2</sub>O/MeCN; for **3**: *N*<sup>6</sup>-benzoyladenine, BSA, then SnCl<sub>4</sub>, 2) CF<sub>3</sub>COOH, H<sub>2</sub>O; for **4**: *N*<sup>2</sup>-acetylguanine, BSA, then Me<sub>3</sub>Si-OTf, 2) HF, HCl in H<sub>2</sub>O/MeCN. b) (MeO)<sub>2</sub>Tr-Cl, AgNO<sub>3</sub>, *sym*-collidine, then NaOH in THF/MeOH/H<sub>2</sub>O. c) Bu<sub>2</sub>SnCl<sub>2</sub>, <sup>i</sup>Pr<sub>2</sub>NEt, then tom-Cl. d) (<sup>i</sup>Pr<sub>2</sub>N)<sub>2</sub>PCl(OCH<sub>2</sub>CH<sub>2</sub>CN), <sup>i</sup>Pr<sub>2</sub>NEt.

2.2. Synthesis of 2'-O-[(3-Bromopropoxy)methyl]-Substituted Ribonucleosides. The reactive, 2'-O-substituted ribonucleosides **25–28** were prepared by alkylation of the 5'-O-dimethoxytritylated, base-protected nucleosides **17–20** with 1-bromo-3-(chloromethoxy)propane (**34**) according to the conditions we developed for the introduction of related, formaldehyde acetal based 2'-O-protecting groups [4][5][9]. The alkylating reagent **34** was prepared in two steps. From 3-bromopropanol the O,S-acetal **33** was prepared with DMSO, Ac<sub>2</sub>O, and AcOH according to [10]. This intermediate was then converted to **34** with SO<sub>2</sub>Cl<sub>2</sub> according to [11]. Treatment of the nucleosides **17–20** first with Bu<sub>2</sub>SnCl<sub>2</sub>/iPr<sub>2</sub>NEt and then with the alkylating agent **34** afforded mixtures of the corresponding 2'-O- and 3'-O-alkylated nucleosides **21–24** and **25–28**, respectively, which could be separated easily by chromatography (silica gel)<sup>3</sup>). From the 2'-O-alkylated nucleosides **21–24**, the corresponding phosphoramidites **29–32** were prepared according to standard procedures.

a) The synthesis of the analogous N<sup>4</sup>-acetyleytosine containing phosphoramidite is reported in [3] and [4].

<sup>3)</sup> The correct position of the [(3-bromopropoxy)methyl] group was determined by <sup>1</sup>H-NMR spectroscopy according to [5]. See also Footnote 2.

#### Scheme 2




- a) Bu<sub>2</sub>SnCl<sub>2</sub>, <sup>i</sup>Pr<sub>2</sub>NEt, then 34. b) (<sup>i</sup>Pr<sub>2</sub>N)<sub>2</sub>PCl(OCH<sub>2</sub>CH<sub>2</sub>CN), <sup>i</sup>Pr<sub>2</sub>NEt. c) DMSO, Ac<sub>2</sub>O, AcOH. d) SO<sub>2</sub>Cl<sub>2</sub>.
- 2.2. Solid-Phase Substitutions. Exploratory experiments were carried out to investigate the potential for solid-support functionalization of oligonucleotides containing 2'-O-[(3-bromopropoxy)methyl]substituted ribonucleosides and to collect some information about the influence of such additional substituents on the pairing behavior.

The 2'-O-[(3-bromopropoxy)methyl]-substituted cytidine phosphoramidite 32 was incorporated into a tetradecameric DNA sequence at two positions, once near the 3'-end ( $\rightarrow$ 35) and once near the 5'-end ( $\rightarrow$ 36), respectively (*Scheme 3* and *Table 1*). Under our conditions (which were developed for the assembly of RNA sequences [3][9]), the coupling yields were >99% for the standard DNA phosphoramidites and 98% for the modified phosphoramidite 32 (*Scheme 3*). As a comparison and for comparative duplex-stability studies, the corresponding DNA sequence 37 and the complementary DNA and RNA sequences 38 and 39, respectively, were prepared as well (*Table 1*).

Small portions of the immobilized oligonucleotides **35** and **36** were then treated with 10M MeNH<sub>2</sub> in H<sub>2</sub>O/EtOH 1:1 (*Scheme 3*). In *Fig. 1*, the HPLC trace of such a crude product is presented together with the chromatogram of the analogous unmodified DNA sequence **37**. According to this analysis, from sequence **35**, a dominant main product (with essentially the same retention time as the unmodified DNA sequence **37**) was formed, together with a small by-product. The main product

## Scheme 3



CPG = long chain alkylamino controlled pore glass

a) Oligonucleotide assembly, see *Exper. Part. b*) HSCH<sub>2</sub>COOH, <sup>i</sup>Pr<sub>2</sub>NEt. c) HOBT, TBTU, <sup>i</sup>Pr<sub>2</sub>NEt, L-isoleucine allyl ester. d) HOBT, TBTU, <sup>i</sup>Pr<sub>2</sub>NEt, MeNH<sub>2</sub>. e) HOBT, TBTU, <sup>i</sup>Pr<sub>2</sub>NEt, histamine. f) MeNH<sub>2</sub>.

| Sequence <sup>a</sup> )             | Product ratio <sup>b</sup> ) | Yield <sup>c</sup> ) | $T_{\rm m}^{\rm d}$ ) | $[M-H]^{-e})$ |      |
|-------------------------------------|------------------------------|----------------------|-----------------------|---------------|------|
|                                     | [%]                          | [%]                  | [°]                   | calc.         | obs. |
| 40 d(GGCGACCGACWGT)                 | 90                           | 45                   | 67                    | 4078          | 4081 |
| <b>41</b> d(GGWGACCGACCGT)          | 90                           | 40                   | 67                    | 4078          | 4080 |
| <b>49</b> d(GGCGACCGACXGT)          | 70                           | 40                   | 67                    | 4152          | 4153 |
| <b>50</b> d(GG <b>X</b> GACCGACCGT) | 75                           | 40                   | 66                    | 4152          | 4153 |
| <b>51</b> d(GGCGACCGAC <b>Y</b> GT) | 75                           | 35                   | 68                    | 4232          | 4234 |
| <b>52</b> d(GGYGACCGACCGT)          | 65                           | 30                   | 68                    | 4232          | 4235 |
| <b>53</b> d(GGCGACCGAC <b>Z</b> GT) | 55                           | 25                   | 67                    | 4265          | 4265 |
| <b>37</b> d(GGCGACCGACCGT)          |                              | 60                   | 68                    | 3960          | 3959 |
| <b>38</b> d(ACGGTCGGTCGCC)          |                              | 55                   |                       | 3952          | 3951 |
| <b>39</b> r(ACGGUCGGUCGCC)          |                              | 30                   |                       | 4129          | 4130 |

Table 1. Characterization of Functionalized Oligonucleotides

<sup>&</sup>lt;sup>a)</sup> For the structure of **W**, **X**, **Y**, and **Z**, see *Scheme 3*. <sup>b)</sup> Area-% (HPLC, capillary electrophoresis (CE)) of product signal. <sup>c)</sup> After purification by ion-exchange HPLC; by CE, the purity was estimated >95%. <sup>d)</sup> With the RNA sequence **39** as complement; conditions: c (sequences) =  $1 + 1 \mu M$ ,  $150 \mu M$  NaCl,  $2 \mu M$  MgCl<sub>2</sub>,  $10 \mu M$  Tris·HCl (pH 7.4). <sup>e)</sup> MALDI-TOF-MS; matrix, 2,4-dihydroxyacetophenone (ammonium citrate) according to [12].

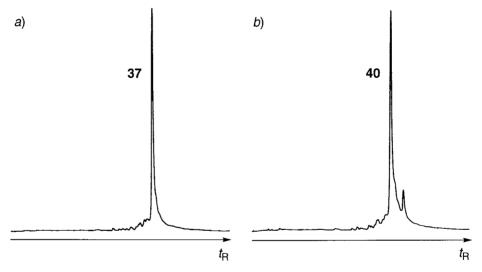



Fig. 1. Reversed-phase HPLC traces from crude sequences: a) parent DNA sequence 37; b) (methylamino)-substituted DNA sequence 40. Elution with  $A \rightarrow 20\%$  B in 30 min, measured at 260 nm (see Exper. Part).

was isolated by prep. HPLC and identified by MALDI-TOF mass spectrometry as the (methylamino)-substituted sequence **40** (*Table 1*).

Further solid-support functionalizations were carried out according to protocols that we developed earlier [4] (*Scheme 3*). The immobilized sequences **35** and **36** were treated with thioglycolic acid (= mercaptoacetic acid) in the presence of  ${}^{i}Pr_{2}NEt_{3}$ , and the resulting intermediates **42** and **43** (now containing a reactive carboxy group) were treated under peptide-coupling conditions with MeNH<sub>2</sub>, histamine, and L-isoleucine allyl ester, respectively. After deprotection of the intermediates **44** – **48** with MeNH<sub>2</sub> in EtOH/H<sub>2</sub>O 1:1, the main products **49** – **53** were isolated by HPLC and analyzed by

MALDI-TOF-MS (*Table 1*). According to HPLC and capillary electrophoresis (CE) of the crude products, the efficiency of the overall functionalization procedures was in the range of 55–75%. *Fig. 2* shows the CE chromatogram of the crude histamine-substituted sequence **51** (*Fig. 2,a*); this sequence was formed in a overall efficiency of *ca.* 75% and could be isolated in pure form by ion-exchange chromatography (*Fig. 2,b*).

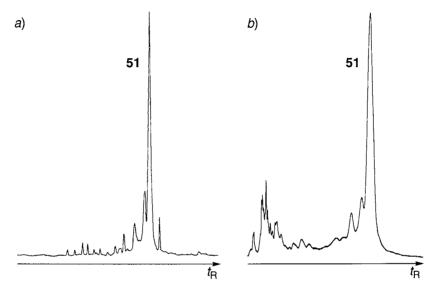



Fig. 2. a) Capillary-electrophoresis (CE) trace of crude histamine-substituted sequence **51** (conditions, see [9], measured at 260 nm); b) ion-exchange HPLC trace of crude **51** obtained from a preparative run (elution with  $25\% B \rightarrow 40\% B$  in 30 min, measured at 260 nm) (see Exper. Part).

2.4. Thermal-Denaturation Study. In Table 1, the transition temperatures ( $T_{\rm m}$ ) of the duplexes formed from the functionalized sequences 40, 41, and 49–53 and the complementary RNA sequence 39 are presented. Under physiological conditions (150 mm NaCl, 2 mm MgCl<sub>2</sub>, pH 7.4), the modified duplexes had similar or slightly lower  $T_{\rm m}$  values than the unmodified duplex 37·39. A more detailed study was carried out with the two histamine-substituted sequences 51 and 52 (Table 2). Their duplexes with the complementary DNA sequence were significantly destabilized (as compared to the corresponding unmodified DNA duplex 37·38). The  $\Delta G^0$  values for duplex formation of the modified DNA·RNA duplexes 51·39 and 52·39, respectively, were more negative ( $\Delta \Delta G^0 = -0.9$  and -2.8 kcal mol<sup>-1</sup>, resp.) than the corresponding value of the parent DNA·RNA duplex 37·39. In contrast to these results, the corresponding DNA·DNA duplexes 51·38 and 52·38 showed more positive  $\Delta G^0$  values than the parent DNA·DNA duplex 37·38.

Fig. 3 illustrates the position of the additional imidazole moieties within the DNA  $\cdot$  RNA duplexes  $51 \cdot 39$  and  $52 \cdot 39$ , respectively. In duplex  $51 \cdot 39$ , the additional functional group is near the 3'-end of the modified DNA sequence and is pointing into solution, whereas in duplex  $52 \cdot 39$ , the additional functional group is near the 5'-end and located within the minor groove of the duplex. The  $T_{\rm m}$  values and the thermodynamic data reflect a higher stability of the latter duplex, indicating a positive

|         | <i>T</i> <sub>m</sub> <sup>b</sup> )<br>[°C] | $\Delta H^0$ [kcal mol <sup>-1</sup> ] | <i>T∆S</i> <sup>0</sup> (298 K)<br>[kcal mol <sup>-1</sup> ] | △G <sup>0</sup> (298 K)<br>[kcal mol <sup>-1</sup> ] | $\Delta \Delta G^{0} (298 \text{ K})^{c})$ [kcal mol <sup>-1</sup> ] |
|---------|----------------------------------------------|----------------------------------------|--------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|
| 37 · 39 | 68.0                                         | - 110.8                                | - 88.0                                                       | - 22.8                                               |                                                                      |
| 51 · 39 | 68.0                                         | -116.9                                 | -93.2                                                        | -23.7                                                | -0.9                                                                 |
| 52 · 39 | 67.8                                         | -131.9                                 | -106.3                                                       | -25.6                                                | -2.8                                                                 |
| 37 · 38 | 65.2                                         | - 98.1                                 | -77.6                                                        | -20.5                                                |                                                                      |
| 51 · 38 | 63.6                                         | - 99.3                                 | -79.1                                                        | -20.2                                                | +0.3                                                                 |
| 52 · 38 | 62.1                                         | -90.7                                  | -71.7                                                        | -19.0                                                | +1.5                                                                 |

Table 2. Thermodynamic Parameters of Duplex Formation<sup>a</sup>)

interaction between the RNA strand **39** and the imidazole moiety on the modified DNA strand **52** (located in the minor groove). In the analogous duplexes with the complementary DNA strands, however, a duplex destabilization by the additional imidazole moieties was observed, and this destabilization was more important when the substituents were located in the minor groove. This difference is probably the

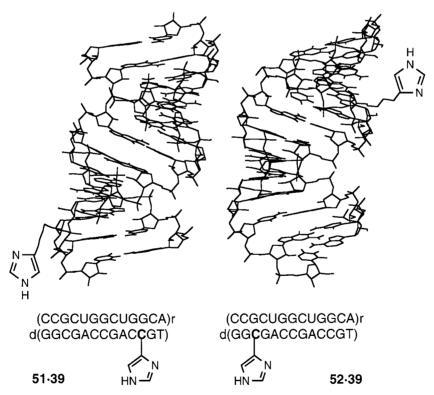



Fig. 3. Pictures of modified A-type DNA·RNA duplexes 51·39 and 52·39, illustrating the position of the additional histamine substituent. The duplex was constructed with 'MacroModel', and the substituent was added without further minimization.

<sup>&</sup>lt;sup>a)</sup> In 150 mm NaCl, 2 mm MgCl<sub>2</sub>, and 10 mm *Tris*·HCl (pH 7.4); thermodynamic parameters and transition temperatures were determined according to [13] (the exper. error was estimated to be  $\pm 5\%$ ). <sup>b)</sup>  $c(\text{sequences}) = 1 + 1 \, \mu \text{m}$ . <sup>c)</sup> Difference between the  $\Delta G^0$  value of the modified and the parent duplex.

consequence of a disturbance of the hydration shell within the DNA DNA duplex  $52 \cdot 38^4$ ).

In conclusion, we present novel reactive building blocks that allow the introduction of a variety of functional groups by substitution and subsequent conjugation on the solid phase according to [3]. These building blocks are fully compatible with common procedures employed for the automated assembly of DNA and RNA oligonucleotides and can be introduced by every desired position within a sequence.

This work was supported by the ETH-Zürich and the Alfred-Werner-Stipendium. We thank Patrick A. Weiss (Xeragon AG, Zürich) for providing us with reagents.

### **Experimental Part**

General. Reagents and solvents from Fluka: (MeO), Tr-Cl, tom-Cl, nucleosides 17-20, BnSTet, and tomphosphoramidites [9] from Xeragon AG; standard DNA phosphoramidites (containing thymine, N<sup>6</sup>-(phenoxyacetyl)guanine, N<sup>2</sup>-[(4-isopropylphenoxy)acetyl]guanine, and N<sup>4</sup>-acetylcytosine) and CPG supports from Glen Research;  $N^2$ -acetylguanine [15] and  $N^6$ -benzoyladenine [16] were prepared according to published procedures. Workup implies distribution of the reaction mixture between CH<sub>2</sub>Cl<sub>2</sub> and sat. aq. NaHCO<sub>3</sub> soln., drying (MgSO<sub>4</sub>) of the org. layer, and evaporation. Column chromatography (CC): silica gel from Macherey & Nagel, Al<sub>2</sub>O<sub>3</sub> (act. III) from Woelm. TLC: precoated silica gel plates from Macherey & Nagel, stained by dipping into a soln. of anisaldehyde (10 ml; Aldrich), H<sub>2</sub>SO<sub>4</sub> soln. (10 ml), and AcOH (2 ml) in EtOH (180 ml) and subsequent heating with a heat-gun. Reversed-phase HPLC: Aquapore RP 300, 4.6 × 220 mm (Brownlee Labs); eluent A 0.1M (Et<sub>3</sub>NH)OAc in H<sub>2</sub>O, pH 7, and eluent B MeCN; flow 1 ml/min; detection at 260 nm, elution at 40°. Ion-exchange HPLC: Mono Q HR 5/5 (Pharmacia); eluent A, 10 mm sodium phosphate in H<sub>2</sub>O, pH 11.5, and eluent B, 10 mm sodium phosphate/Im NaCl in H<sub>2</sub>O, pH 11.5; flow 1 ml/min; detection at 260 nm, elution at r.t. M.p.: uncorrected. UV Spectra:  $\lambda_{\max}(\varepsilon)$  in nm. IR Spectra:  $\tilde{v}$  in cm<sup>-1</sup>. NMR Spectra: chemical shifts  $\delta$  in ppm and coupling constants J in Hz. FAB-MS: positive mode; 2-nitrobenzyl alcohol (NOBA) as matrix; m/z (rel. %). MALDI-TOF-MS: according to [12]. Abbreviations: (MeO)<sub>2</sub>Tr-Cl = 4,4'-dimethoxytrityl chloride, tom-Cl = (triisopropylsilyloxy)methyl chloride, BSA = bis(trimethylsilyl)acetamide, BnSTet = 1-(benzylthio)-1Htetrazole, HOBT = 1-hydroxy-1*H*-benzotriazole, TBTU = *O*-(benzotriazole-1-yl)-*N*,*N*,*N*',*N*'-tetramethyluronium tetrafluoroborate, CPG = long-chain alkylamino controlled pore glass.

Thermal-Denaturation Studies. Absorbance vs. temperature profiles were recorded in fused quartz cuvettes at 260 nm on a Cary Bio-1 spectrophotometer equipped with a Peltier temperature-controlling device. The samples were prepared under sterile conditions from stock solns. of the oligonucleotide, 1m  $Tris \cdot$  HCl buffer (pH 7.4), 5m NaCl, and 50 mm MgCl<sub>2</sub> and subsequently degassed. A layer of silicon oil was placed on the surface of the soln. Prior to the measurements, each sample was briefly heated to 80°. The curves were obtained with both a cooling and heating ramp of 0.3°/min. The transition temperatures ( $T_{\rm m}$ ) were obtained after differentiation of the melting curves.

General Procedure (G.P.) for the Preparation of Phosphoramidites 14-16 and 29-32. At r.t., 0.3m precursor nucleoside in CH<sub>2</sub>Cl<sub>2</sub> was treated consecutively with 2.5 equiv. of  ${}^{1}\text{Pr}_{2}\text{NEt}$  and 1.2 equiv. of  ${}^{1}\text{Pr}_{2}\text{NP}$ . After 12–16 h at r.t., the mixture was subjected to CC.

1-[6'-O-(5-Bromopentyl)-2',3'-di-O-benzoyl-β-D-allofuranosyl]uracil (2). A suspension of 1 [4] (3.2 g, 4.0 mmol), uracil (0.5 g, 4.4 mmol), and BSA (2.5 ml, 10 mmol) in MeCN (12 ml) was stirred at 60° for 30 min. Then, SnCl<sub>4</sub> (1.7 ml, 14 mmol) was added to the clear soln., which was kept at 60° for another 20 min. After workup, the residue was dissolved in MeCN (80 ml), treated with conc. HCl soln. (0.8 ml) and 40% HF in H<sub>2</sub>O (1.6 ml), and stirred at r.t. for 8 h. Workup and CC (silica gel, hexane/AcOEt 7:3 → 3:7) gave 2 (1.78 g, 75%). White foam. TLC (hexane/AcOEt 3:7):  $R_f$  0.40. [ $\alpha$ ] $_D^{cb}$  = −86.0 (c = 1.0, CHCl<sub>3</sub>). UV (MeOH): 257 (12000), 251 (11700), 229 (29000), 216 (23300). IR (CHCl<sub>3</sub>): 3619w, 3392w, 3014m, 2975w, 3939w, 1727s, 1700s, 1602m, 1453m, 1392w, 1317m, 1262s, 1222m, 1178w, 1126m, 1094m, 1070w, 1046m, 877w.  $^1$ H-NMR (300 MHz, CDCl<sub>3</sub>): 1.47 – 1.65 (m, BrCH<sub>2</sub>(CH<sub>2</sub>)<sub>2</sub>); 1.82 – 1.89 (m, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>); 3.23 (d, J = 1.9, OH – C(4')); 3.39 (t, J = 6.9,

<sup>4)</sup> For the influence of one 2'-O-Me substituent within a DNA sequence on the minor-groove hydration, see [14].

BrCH<sub>2</sub>); 3.52-3.57 (m, CH<sub>2</sub>O); 3.65 (br. d,  $J \approx 5.9$ , 2 H-C(6′)); 4.20-4.23 (m, H-C(5′)); 4.37 (br. s, H-C(4′)); 5.75 (dd, J = 5.6, 7.5, H-C(2′)); 5.83 (d, J = 8.1, H-C(5)); 5.89 (dd, J = 1.5, 5.6, H-C(3′)); 6.50 (d, J = 7.5, H-C(1′)); 7.32-7.61 (m, 6 arom. H); 7.90-8.04 (m, 4 arom. H, H-C(6)); 8.18 (s, NH-C(3)).  $1^3$ C-NMR (75 MHz, CDCl<sub>3</sub>): 24.8 (t, Br(CH<sub>2</sub>)<sub>2</sub>CH<sub>2</sub>); 28.7 (t, BrCH<sub>2</sub>CH<sub>2</sub>); 32.5 (t, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>); 33.7 (t, BrCH<sub>2</sub>); 71.0, 71.1 (2t, C(6′), CH<sub>2</sub>O); 71.4, 71.8, 74.0 (3d, C(2′), C(3′), C(5′)); 84.6 (d, C(4′)); 86.3 (br. d, C(1′)); 103.6 (d, C(5)); 123.4 (s, C(5)); 128.4, 128.5, 128.6, 129.8, 129.9 (5d, arom. C); 129.0, 133.71, 133.74 (3s, arom. C); 140.5 (d, C(6)); 150.7 (s, C(2)); 163.0 (s, C(4)), 165.3, 165.5 (2s, CO): FAB-MS: 1263 (26, [M + H] $^+$ ), 631 (10, [M + H] $^+$ ), 631 (12, [M + H] $^+$ ), 521 (79), 519 (76). Anal. calc. for  $C_{29}H_{31}BrN_2O_9$  (631.48): C 55.16, H 4.95, N 4.44; found: C 55.25, H 4.93, N 4.45.

N<sup>6</sup>-Benzoyl-9-[2',3'-di-O-benzoyl-6'-O-(5-bromopentyl)-\(\beta\)-allofuranosyl adenine (3). A suspension of 1 [4] (3.2 g, 4.0 mmol), N<sup>6</sup>-benzovladenine (1.14 g, 4.8 mmol), and BSA (3.5 ml, 14 mmol) in MeCN (12 ml) was stirred at 60° for 1 h. Then, SnCl<sub>4</sub> (1.9 ml, 20 mmol) was added to the clear soln., which was kept at 60° for another 20 min. After workup, the residue was dissolved in CF<sub>3</sub>COOH/H<sub>2</sub>O 1:1 (80 ml) and stirred at r.t. for 12 h. Workup and CC (silica gel, hexane/AcOEt 8:2 - 4:6) gave 3 (1.13 g, 45%). White foam. TLC (hexane/ AcOEt 3:7):  $R_f$  0.31.  $[\alpha]_D^{25} = -145.3$  (c = 1.0, CHCl<sub>3</sub>). UV (MeOH): 280 (21900), 254 (12600), 231 (32800). IR (CHCl<sub>3</sub>): 3619w, 3014m, 2976w, 1730s, 1612m, 1590m, 1481w, 1457m, 1272s, 1245s, 1178w, 1123m, 1092m, 908w, 877w.  $^{1}$ H-NMR (300 MHz, CDCl<sub>3</sub>): 1.42 – 1.52, 1.57 – 1.66 (m, BrCH<sub>2</sub>(CH<sub>2</sub>)<sub>3</sub>); 1.78 – 1.88 (m, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub>);  $3.33(t, J = 6.8, BrCH_2)$ ;  $3.55(t, J = 6.2, CH_2O)$ ; 3.69 - 3.80(m, 2H - C(6')); 4.28 - 4.31(m, H - C(5')); 4.67(br. s, f)H-C(4'); 6.16 (dd, J=1.2, 5.0, H-C(3')); 6.19 (d, J=2.5, OH-C(5')); 6.35-6.43 (m, H-C(1'), H-C(2')); 7.26 - 7.65 (m, 9 arom. H); 7.79 - 8.10 (m, 6 arom. H); 8.18 (s, H-C(2)); 8.86 (s, H-C(8)); 9.10 (br. s, NH-C(6)). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 24.9 (t, Br(CH<sub>2</sub>)<sub>2</sub>CH<sub>2</sub>); 28.7 (t, BrCH<sub>2</sub>CH<sub>2</sub>); 32.6 (t, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>); 33.7 (t, BrCH<sub>2</sub>); 70.8, 71.9, 73.7 (3d, C(2'), C(3'), C(5')); 71.1, 71.5 (2t, C(6'), CH<sub>2</sub>O); 87.2, 88.2 (br. d, C(1'), C(4')); 123.4 (s, C(5)); 127.9, 128.5, 128.7, 128.9, 129.8, 133.0 (6d, arom. C); 128.3, 129.3, 133.5 (3s, arom. C); 133.7 (d, arom. C); 142.4 (d, C(8)); 150.4 (s, C(4)); 151.0 (s, C(6)); 152.6 (d, C(2)); 164.3, 164.8, 165.2 (3s, CO).FAB-MS: 761 (45,  $[M+H]^+$ ), 760 (100,  $M^+$ ), 759 (45,  $[M+H]^+$ ), 758 (87,  $M^+$ ), 519 (58), 105 (64).

1-[6'-O-(5-Bromopentyl)-5'-O-(4,4'-dimethoxytrityl)-β-D-allofuranosyl]uracil (5). A suspension of 2 (1.78 g, 2.8 mmol), AgNO<sub>3</sub> (476 mg, 2.8 mmol), and syn-collidine (0.93 ml, 7 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 ml) was treated with (MeO)<sub>2</sub>Tr-Cl (1.42 g, 4.2 mmol) at r.t. for 1 h. After filtration and evaporation, the residue was dissolved in an ice-cold soln. of THF/MeOH/H<sub>2</sub>O 5:4:1 (40 ml), treated with 10N aq. NaOH (0.8 ml), stirred at r.t. for 30 min, neutralized with AcOH (0.48 ml), and concentrated to 10 ml. Workup and CC (silica gel, CH<sub>2</sub>Cl<sub>2</sub>  $(+2\% \text{ Et}_3\text{N}) \rightarrow \text{CH}_2\text{Cl}_2/\text{MeOH} 97:3 \ (+2\% \text{ Et}_3\text{N}))$  gave 5 (1.69 g, 87%). White foam. TLC (CH<sub>2</sub>Cl<sub>2</sub>/MeOH 92:8):  $R_t$  0.45.  $[\alpha]_D^{25} = 31.8$  (c = 1.0, CHCl<sub>3</sub>): UV (MeOH): 269 (9500), 235 (21400), 227 (19700). IR (CHCl<sub>3</sub>): 3622w, 3390w, 3029m, 1691s, 1608s, 1509m, 1461m, 1391w, 1302w, 1253s, 1226m, 1178m, 1107m, 1036s, 909w, 877w, 828w.  $^{1}$ H-NMR (300 MHz, CDCl<sub>3</sub>): 1.55 – 1.69 (m, BrCH<sub>2</sub>(CH<sub>2</sub>)<sub>2</sub>); 1.90 – 1.94 (m, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>); 3.17 – 3.41 (m, CH<sub>2</sub>O, 2 H–C(6'), OH); 3.45 (t, J = 6.5, BrCH<sub>2</sub>); 3.60 (br. s, H–C(5')); 3.795, 3.798 (2s, MeO); 4.01 (dd, J = 1.5, 7.5, H - C(4')); 4.16 (dd, J = 4.4, 5.6, H - C(2')); 4.69 (dd, J = 5.6, 7.5, H - C(3')); 4.88 (d, J = 8.1, 1.5);H-C(5); 5.86 (d, J=4.4, H-C(1')); 6.82 – 6.86 (m, 4 arom. H); 7.22 – 7.53 (m, 9 arom. H, H-C(6)). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 27.7 (t, Br(CH<sub>2</sub>)<sub>2</sub>CH<sub>2</sub>); 28.8 (t, BrCH<sub>2</sub>CH<sub>2</sub>); 32.2 (t, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>); 33.8 (t, BrCH<sub>2</sub>); 55.3 (q, MeO); 70.7, 71.3, (2t, C(6')); 68.1, 71.5, 75.5 (3d, C(2'), C(3'), C(5)); 85.6 (d, C(4')); 87.9  $(s, Ar_2C(Ph))$ ; 89.2 (d, C(1')); 103.6 (d, C(5)); 113.3, 113.4 (2d, arom. C); 127.1, 127.7, 128.1, 128.4, 130.1, 130.6 (6d, arom. C); 135.6, 135.9 (2s, arom. C); 140.2 (d, C(6)); 146.3 (s, arom. C); 150.3 (s, C(2)); 158.7, 158.8 (2s, C(2)); 163.1 (s, C(4)). FAB-MS: 747 (33), 746 (53), 727 (2, M<sup>+</sup>), 725 (2, M<sup>+</sup>), 303 (100).

N<sup>6</sup>-Benzoyl-9-[6'-O-(5-bromopentyl)-5'-O-(4,4'-dimethoxytrityl)-β-D-allofuranosyl]adenine (**6**). A suspension of **3** (1.13 g, 1.5 mmol), AgNO<sub>3</sub> (255 mg, 1.5 mmol), and *sym*-collidine (0.5 ml, 3.8 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 ml) was treated with (MeO)<sub>2</sub>Tr-Cl (0.78 g, 2.3 mmol) at r.t. for 3 h. After filtration and evaporation, the residue was dissolved in an ice-cold soln. of THF/MeOH/H<sub>2</sub>O 5 : 4 : 1 (40 ml), treated with 10N aq. NaOH (0.8 ml), stirred at 4° for 15 min, neutralized with AcOH (0.48 ml), and concentrated to 10 ml. Workup and CC (silica gel, CH<sub>2</sub>Cl<sub>2</sub> (+2% Et<sub>3</sub>N)  $\rightarrow$  CH<sub>2</sub>Cl<sub>2</sub>/MeOH 97:3 (+2% Et<sub>3</sub>N)) gave **6** (1.13 g, 92%). Pale yellow foam. TLC (CH<sub>2</sub>Cl<sub>2</sub>/MeOH 95:5):  $R_1$  0.29. [a]  $\frac{1}{10}$  = -14.0 (c = 1.0, CHCl<sub>3</sub>). UV (MeOH): 278 (18800), 256 (11200), 232 (29100), 224 (27900). IR (CHCl<sub>3</sub>): 3622w, 3113w, 2975w, 1709m, 1611s, 1585w, 1509m, 1454m, 1299w, 1251s, 1179m, 1046s, 877w, 829w. <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>): 1.52 – 1.60 (m, BrCH<sub>2</sub>(CH<sub>2</sub>)<sub>2</sub>); 1.83 – 1.91 (m, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>); 3.09 – 3.13 (m, H – C(6')); 3.18 – 3.25 (m, CH<sub>2</sub>O, H' – C(6')); 3.43 (t, J = 6.8, BrCH<sub>2</sub>); 3.64 – 3.65 (m, H – C(5')); 3.75, 7.6 (2s, MeO); 4.27 (dd, J = 3.5, 5.0, H – C(4')); 4.67 (dd, J = 4.6, 5.3, H – C(2')); 4.87 (br. t, J ≈ 5.3, H – C(3')); 5.96 (d, J = 4.4, H – C(1')); 6.70 – 6.78 (m, 4 arom. H); 7.17 – 7.61 (m, R (75 MHz, CDCl<sub>3</sub>): 24.8 (t, Br(CH<sub>2</sub>)<sub>2</sub>CH<sub>2</sub>); 28.8 (t, BrCH<sub>2</sub>CH<sub>2</sub>); 32.5 (t, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>); 33.7 (t, BrCH<sub>2</sub>); 55.3 (q, MeO); 70.1, 71.1 (2t, C(6')); 70.0, 72.1, 74.7 (2t, C(6')); 70.0, 72.1, 74.7

(3d, C(2'), C(3'), C(5)); 86.3 (d, C(4'), CH<sub>2</sub>O); 87.2 (s, Ar<sub>2</sub>CPh)); 89.3 (d, C(1')); 113.1 (d, arom. C); 123.0 (s, C(5)); 128.4 (s, arom. C); 126.9, 127.7, 127.9, 128.1, 128.9, 130.3, 130.4, 132.8 (8d, arom. C); 133.6, 136.2, 136.5 (3s, arom. C); 141.7 (d, C(8)); 145.9 (s, arom. C); 149.6 (s, C(4)); 151.2 (s, C(6)); 152.4 (d, C(2)); 158.6, 159.7 (2s, MeO-C); 164.3 (s, CO). FAB-MS: 855 (22, [M+H]+), 854 (37, M+), 853 (21, [M+H]+), 852 (33, M+), 303 (100)

N<sup>2</sup>-Acetyl-9-[6'-O-(5-bromopentyl)-5'-O-(4,4'-dimethoxytrityl)-β-D-allofuranosyl]guanine (N°-7) and N²-Acetyl-7-[6'-O-(5-bromopentyl)-5'-O-(4,4'-dimethoxytrityl)-β-D-allofuranosyl]guanine (N°-7). A suspension of  $\mathbf{1}$  [4] (4.0 g, 5.0 mmol), N²-acetylguanine (1.6 g, 7.5 mmol), and BSA (6 ml, 25 mmol) in (CH<sub>2</sub>)Cl)<sub>2</sub> (15 ml) was stirred at 80° for 1 h. Then Me<sub>3</sub>Si-OSO<sub>2</sub>CF<sub>3</sub> (8.1 ml, 45 mmol) was added to the clear soln., which was kept at 80° for another 4 h. After workup, the residue was dissolved in MeCN (100 ml), treated with conc. HCl soln. (1 ml) and 40% HF in H<sub>2</sub>O (2 ml), and stirred at r.t. for 4 h. Workup and a filtration over silica gel gave a mixture of N³- and N³-nucleoside derivatives. The mixture (1.53 g, 2.0 mmol) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (12 ml) and treated with *sym*-collidine (0.67 ml, 5 mmol), AgNO<sub>3</sub> (340 mg, 2 mmol), and (MeO)<sub>2</sub>Tr-Cl (1.2 g, 3.6 mmol). The suspension was stirred at r.t. for 4 h. After filtration and evaporation, the residue was dissolved in an ice-cold soln. of THF/MeOH/H<sub>2</sub>O 5:4:1 (50 ml), treated with 10N aq. NaOH (1 ml), stirred at 4° for 15 min, neutralized with AcOH (0.6 ml), and concentrated to 10 ml. Workup and CC (silica gel, CH<sub>2</sub>Cl<sub>2</sub> (+2% Et<sub>1</sub>N))  $\rightarrow$  CH<sub>2</sub>Cl<sub>2</sub>/MeOH 97:3 (+2% Et<sub>1</sub>N)) gave 42 (0.95 g, 25%) and 43 (0.56 g, 14%) as yellow foams.

Data of N<sup>9</sup>-7: TLC (CH<sub>2</sub>Cl<sub>2</sub>/MeOH 90:10):  $R_{\rm f}$  0.32. [ $\alpha$ ]<sub>D</sub><sup>25</sup> = −26.2 (c = 1.0, CHCl<sub>3</sub>). UV (MeOH): 275 (9300), 236 (19000), 225 (16700). IR (CHCl<sub>3</sub>): 3620w, 3022m, 2937w, 1687m, 1609s, 1562m, 1509m, 1403m, 1375w, 1302m, 1252w, 1178w, 1118w, 1037s, 877w, 826w. <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>): 1.40−1.47 (m, BrCH<sub>2</sub>(CH<sub>2</sub>)<sub>2</sub>); 1.80−1.84 (m, Br(CH<sub>2</sub>)<sub>3</sub>)CH<sub>2</sub>); 2.30 (s, Ac); 3.02−3.23 (m, CH<sub>2</sub>O, 2 H−C(6')); 3.37 (t, t =6.7, BrCH<sub>2</sub>); 3.48−3.52 (m, H−C(5'), OH); 3.71, 3.73 (2s, MeO); 4.31−4.33 (m, H−C(4')); 4.51−4.54 (m, H−C(3')); 4.73−4.75 (m, H−C(2')); 5.76 (t, t =5.6, H−C(1')); 6.70−6.76 (t, t 4 arom. H); 7.13−7.45 (t, 9 arom. H); 7.58 (t, H−C(8)). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 23.5 (t, t MeCO); 24.8 (t, Br(CH<sub>2</sub>)<sub>2</sub>CH<sub>2</sub>); 28.7 (t, BrCH<sub>2</sub>CH<sub>2</sub>); 32.5 (t, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>); 33.8 (t, BrCH<sub>2</sub>); 55.2 (t, MeO); 69.7, 70.9 (2t, C(6'), CH<sub>2</sub>O); 70.6, 72.4, 74.9 (3t, C(2'), C(3'), C(5')); 86.5 (t, C(4')); 87.2 (t, Ar<sub>2</sub>C(Ph)); 89.1 (t, C(1')); 113.0 (t, arom. C); 120.7 (t, C(5)); 126.9, 127.7, 128.2, 128.3, 130.4, 130.5 (6t, arom. C); 136.2, 136.4 (2t, arom. C); 139.1 (t, C(8)); 145.9 (t, arom. C); 147.4 (t, C(4)); 148.2 (t, C(2)); 158.6, 158.7 (2t, MeO − t), 172.2 (t, CO). FAB-MS: 809 (28, [t H]<sup>+</sup>), 808 (63, t +1, 807 (34, [t H]<sup>+</sup>), 806 (54, t +1, 303 (100).

Data of N<sup>7</sup>-7: TLC (CH<sub>2</sub>Cl<sub>2</sub>/MeOH 95:5):  $R_f$  0.29. [a]<sup>25</sup> = 39.7 (c = 1.0, CHCl<sub>3</sub>). UV (MeOH): 264 (14600), 255 (14300), 223 (32300). IR (CHCl<sub>3</sub>): 3622w, 3152w, 3013m, 2936w, 1679s, 1609s, 1548w, 1509m, 1444w, 1373m, 1301w, 1252s, 1178m, 1116m, 1038m, 877w, 829w. <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>): 1.45−1.56 (m, BrCH<sub>2</sub>(CH<sub>2</sub>)<sub>2</sub>); 1.83−1.87 (m, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>); 2.39 (s, Ac), 3.16−3.21 (m, CH<sub>2</sub>O, H−C(6')); 3.39 (t, J = 6.7, BrCH<sub>2</sub>); 3.36−3.41 (m, H'−C(6')); 3.64−3.69 (m, H−C(5')); 3.75, 3.77 (2s, MeO); 4.24 (br. t, J ≈ 5.0, H−C(4')); 4.31 (br. t, J ≈ 40, H−C(3')); 4.66 (br. t, J ≈ 5.3, H−C(2')); 6.13 (d, J = 4.3, H−C(1')); 6.76−6.81 (m, 4 arom. H); 7.18−7.50 (m, 9 arom. H); 7.85 (s, H−C(8)), 11.02 (br. s, NH−C(6)); 12.41 (br. s, H−N(1)). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 24.5 (q, MeCO); 24.8 (t, Br(CH<sub>2</sub>)<sub>2</sub>CH<sub>2</sub>); 28.7 (t, BrCH<sub>2</sub>CH<sub>2</sub>); 32.4 (t, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>); 33.7 (t, BrCH<sub>2</sub>); 55.2 (q, MeO); 69.9, 71.0 (2t, C(6'), CH<sub>2</sub>O); 70.1, 72.1, 77.4 (3d, C(2'), C(3'), C(5')); 86.2 (d, C(4')); 87.3 (s, Ar<sub>2</sub>CPh); 91.5 (d, C(1')); 111.3 (s, C(5)); 113.0 (d, arom. C); 127.0, 127.8, 128.1, 128.3, 130.4, 130.5 (6d, arom. C); 136.1, 136.4 (2s, arom. C); 141.4 (d, C(8)); 145.9 (s, arom. C); 147.9 (s, C(4)); 153.4 (s, C(2)); 157.4 (s, C(6)), 158.6, 158.7 (2s, MeO −C), 173.5 (s, CO). FAB-MS: 809 (9, [M + H]<sup>+</sup>), 808 (12, M<sup>+</sup>), 807 (12, [M + H]<sup>+</sup>), 806 (19, M<sup>+</sup>), 303 (100).

1-[6'-O-(5-Bromopentyl)-5'-O-(4,4'-dimethoxytrityl)-2'-O-[[(triisopropylsilyl)oxy]methyl]-β-D-allofuranosyl]uracil (8) and 1-[6'-O-(5-Bromopentyl)-5'-O-(4,4'-dimethoxytrityl)-3'-O-[[(triisopropylsilyl)oxy]methyl]-β-D-allofuranosyl]uracil (11). A soln. of 5 (1.68 g, 2.4 mmol) and  ${}^{\rm i}$ Pr<sub>2</sub>NEt (1.5 ml, 7 mmol) in (CH<sub>2</sub>Cl)<sub>2</sub> (8 ml) was treated with Bu<sub>2</sub>SnCl<sub>2</sub> (729 mg, 2.4 mmol) at r.t. for 1.5 h. Then, the mixture was heated to 80°, treated with tom-Cl (700 mg, 3.1 mmol), and stirred at 75° for 15 min. Workup and CC (silica gel, hexane/AcOEt (+2% Et<sub>3</sub>N)  $2:8 \rightarrow 7:3$  (+2% Et<sub>3</sub>N)) gave 8 (1.0 g, 48%) and 11 (480 mg, 23%). White foams.

Data of **8**: TLC (hexane/AcOEt 5:5):  $R_f$  0.59.  $[\alpha]_D^{25} = 31.2$  (c = 1.0, CHCl<sub>3</sub>). UV (MeOH): 268 (9200), 235 (22500), 226 (20700). IR (CHCl<sub>3</sub>): 3622w, 3391w, 3013m, 2945m, 1692s, 1608w, 1509m, 1462m, 1252s, 1224s, 1177w, 1038s, 996w, 881w. <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>): 1.05 – 1.11 (m, <sup>1</sup>Pr<sub>3</sub>Si); 1.43 – 1.55 (m, BrCH<sub>2</sub>(CH<sub>2</sub>)<sub>2</sub>); 1.77 – 1.87 (m, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>); 3.12 – 3.25 (m, 2 H – C(6'), CH<sub>2</sub>O, OH – C(3')); 3.40 (t, J = 6.7, BrCH<sub>2</sub>); 3.49 – 3.50 (m, H – C(5')); 3.80 (s, MeO); 4.10 (dd, J = 2.2, 4.0, H – C(4')); 4.16 (br. t, J = 5.6, H – C(3')); 4.74 – 4.77 (m, H – C(3')); 4.97, 5.17 (2d, J = 5.0, OCH<sub>2</sub>O); 5.06 (d, J = 8.4, H – C(5)); 5.98 (d, J = 5.6, H – C(1')); 6.81 – 6.85 (m, 4 arom. H); 7.07 – 7.51 (m, 9 arom. H, H – C(6)); 8.05 (br. s, H – N(3)). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 11.9 (d, Me<sub>2</sub>CH)<sub>3</sub>Si); 17.8 (q, (de<sub>2</sub>CH)<sub>3</sub>Si); 24.8 (t, Br(CH<sub>2</sub>)<sub>2</sub>CH<sub>2</sub>); 28.7 (t, BrCH<sub>2</sub>CH<sub>2</sub>); 32.5 (t, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>); 33.7

 $(t, BrCH_2)$ ; 55.3 (q, MeO); 69.7, 70.9  $(2t, CH_2O, C(6'))$ ; 69.3, 72.6, 81.2 (3d, C(2'), C(3'), C(5')); 85.8, 86.0 (2d, C(1'), C(4')); 87.8  $(s, Ar_2C(Ph))$ ; 90.5  $(t, OCH_2O)$ ; 102.3 (d, C(5)); 113.2, 113.3 (2d, arom. C); 127.1, 128.0, 130.2, 130.6 (4d, arom. C); 135.8, 135.9 (2s, arom. C); 140.2 (d, C(6)); 146.3 (s, arom. C); 150.2 (s, C(6)); 158.7, 158.8 (2s, MeO-C); 162.9 (s, C(4)). FAB-MS: 913  $(7, M^+)$ , 912  $(4, [M-H]^+)$ , 911  $(7, M^+)$ , 910  $(4, [M-H]^+)$ , 303 (100).

Data of **11**: TLC (hexane/AcOEt 5:5):  $R_t$  0.48.  $[\alpha]_D^{55} = -41.5$  (c = 1.0, CHCl<sub>3</sub>). UV (MeOH): 268 (7800), 235 (21700), 227 (20200). IR (CHCl<sub>3</sub>): 3620w, 3391w, 3018m, 2945m, 1716m, 1694s, 1608w, 1509m, 1462m, 1390w, 1299w, 1252s, 1226m, 1178s, 1076m, 1036s, 881w.  $^1$ H-NMR (300 MHz, CDCl<sub>3</sub>): 1.10–1.14 (m,  $^1$ Pr<sub>3</sub>Si); 1.44–1.54 (m, BrCH<sub>2</sub>(CH<sub>2</sub>)<sub>2</sub>); 1.83–1.87 (m, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>); 3.10–3.20 (m, H–C(6'), CH<sub>2</sub>O); 3.31–3.38 (m, H–C(5'), H'–C(6')); 3.41 (t, J = 6.8, BrCH<sub>2</sub>); 3.79, 3.80 (2s, MeO); 3.80 (d, J = 7.5, OH–C(2')); 4.08–4.11 (m, H–C(4')); 4.18–4.19 (m, H–C(2')); 4.70 (dd, J = 2.2, 5.9, H–C(3')); 4.94, 5.20 (2d, J = 5.7, OCH<sub>2</sub>O); 5.19 (d, J = 7.8, H–C(5)); 5.85 (d, J = 7.5, H–C(1')); 6.81–6.86 (m, 4 arom. H); 7.21–7.49 (m, 9 arom. H, H–C(6')); 8.44 (br. s, H–N(3)).  $^{13}$ C-NMR (75 MHz, CDCl<sub>3</sub>): 11.9 (d, (Me<sub>2</sub>CH)<sub>3</sub>Si); 17.8 (q, (d (d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d - d

N<sup>6</sup>-Benzoyl-9-[6'-O-(5-bromopentyl)-5'-O-(4,4'-dimethoxytrityl)-2'-O-[[(triisopropylsilyl)oxy]methyl]- $\beta$ -D-allofuranosyl]adenine (9) and N<sup>6</sup>-Benzoyl-9-[6'-O-(5-bromopentyl)-5'-O-(4,4'-dimethoxytrityl)-3'-O-[[(triisopropylsilyl)oxy]methyl]- $\beta$ -D-allofuranosyl]adenine (12). As described for 8/11, with 6 (1.05 g, 1.0 mmol),  $^{1}$ Pr<sub>2</sub>NEt (0.7 ml, 4 mmol), (CH<sub>2</sub>Cl)<sub>2</sub> (8 ml), Bu<sub>2</sub>SnCl<sub>2</sub> (334 mg, 1.1 mmol), and tom-Cl (291 mg, 1.3 mmol). Workup and CC (silica gel, hexane/AcOEt (+2% Et<sub>3</sub>N)) 2:8  $\rightarrow$ 8:2 (+2% Et<sub>3</sub>N)) gave 9 (0.45 g, 45%) and 12 (0.20 g, 20%) as pale yellow foams.

Data of 9: TLC (hexane/AcOEt 4:6):  $R_f$  0.56.  $[a]_D^{25} = -46.1$  (c = 1.0, CHCl<sub>3</sub>). UV (MeOH): 278 (19400), 257 (11900), 233 (32000), 226 (31100). IR (CHCl<sub>3</sub>): 3620w, 3016s, 2945m, 2869w, 1708m, 1611m, 1584w, 1509m, 1456s, 1391w, 1300m, 1250s, 1177m, 1048s, 881w, 862w. <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>): 0.97 –1.10 (m, <sup>1</sup>Pr<sub>3</sub>Si); 1.46 –1.56 (m, BrCH<sub>2</sub>(CH<sub>2</sub>)<sub>2</sub>); 1.84 –1.88 (m, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>); 3.05 –3.18 (m, H –C(6'), CH<sub>2</sub>O, OH –C(3')); 3.29 (dd, J = 4.0, 10.3, H' –C(6')); 3.43 (t, J = 6.8, BrCH<sub>2</sub>); 3.67 (br. s, H –C(5')); 3.775, 3.781 (2s, MeO); 4.39 (dd, J = 2.3, 5.6, H –C(4')); 4.72 –4.77 (m, H –C(2'), H –C(3')); 4.83, 5.02 (2d, J = 4.6, OCH<sub>2</sub>O); 6.07 (d, J = 6.0, H –C(1')); 6.78 –6.82 (m, 4 arom. H); 7.21 –7.61 (m, 12 arom. H); 7.80 (s, H –C(2)); 8.01 –8.03 (m, 2 arom. H); 8.64 (s, H –C(8)); 9.02 (br. s, NH –C(6)). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 11.8 (d, (Me<sub>2</sub>CH)<sub>3</sub>Si); 17.8 (q, (Me<sub>2</sub>CH)<sub>3</sub>Si); 24.9 (t, Br(CH<sub>2</sub>)<sub>2</sub>CH<sub>2</sub>); 28.8 (t, BrCH<sub>2</sub>CH<sub>2</sub>); 32.6 (t, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>); 33.7 (t, BrCH<sub>2</sub>); 55.3 (q, MeO); 69.1, 70.7 (2t, CH<sub>2</sub>O, C(6)); 70.3, 72.3, 80.8 (3d, C(2'), C(3'), C(5')); 85.2, 86.9 (2d, C(1'), C(4')); 87.2 (s, Ar<sub>2</sub>C(Ph)); 90.8 (t, OCH<sub>2</sub>O); 113.1 (d, arom. C); 123.5 (s, C(5)); 126.9, 127.7, 127.8, 128.9; 130.3, 130.4, 132.8 (7d, arom. C); 133.7, 136.8 (3s, arom. C); 142.4 (d, C(8)); 146.1 (s, arom. C); 149.5 (s, C(4)); 151.7 (s, C(6)); 152.6 (d, C(2)); 158.3 (s, MeO – C); 164.6 (s, CO). FAB-MS: 1040 (51, [M +H]<sup>+</sup>), 1039 (30, M<sup>+</sup>), 1038 (40, [M +H]<sup>+</sup>), 1037 (35, M<sup>+</sup>), 303 (100).

Data of 12: TLC (hexane/AcOEt 4:6):  $R_1$  0.40.  $[a]_D^{25} = -54.3$ . UV (MeOH): 278 (16200), 257 (10800), 233 (30000), 226 (29400). IR (CHCl<sub>3</sub>): 3621w, 3014w, 2973w, 2869w, 1710m, 1611m, 1585w, 1509m, 1456m, 1390w, 1301m, 1250s, 1178w, 1038s, 880w, 829w. <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>): 1.09–1.11  $(m, {}^{1}Pr_{3}Si)$ ; 1.42–1.57  $(m, BrCH_2(CH_2)_2)$ ; 1.84–1.88  $(m, BrCH_2)_3CH_2$ ); 3.02–3.31  $(m, 2 H-C(6'), CH_2O)$ ; 3.41  $(t, J=6.8, BrCH_2)$ ; 3.59–3.62 (m, H-C(5')); 3.77, 3.78 (2s, MeO); 3.99 (d, J=6.9, OH-C(2')); 4.49–4.55 (m, H-C(3'), H-C(4')); 4.66–4.70 (m, H-C(2')); 4.95, 5.23 (2d,  $J=4.6, OCH_2O)$ ; 5.84 (d, J=6.9, H-C(1')); 6.78–6.84 (m, 4 arom. H); 7.21–7.69 (m, 12 arom. H); 7.82 (s, H-C(2)); 8.01–8.03 (m, 2 arom. H); 8.61 (s, H-C(8)); 9.02 (br. s, NH-C(6)). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 11.9  $(d, (Me_2CH)_3Si)$ ; 17.8  $(q, (Me_2CH)_3Si)$ ; 24.9  $(t, Br(CH_2)_2CH_2)$ ; 28.9  $(t, BrCH_2CH_2)$ ; 32.6  $(t, Br(CH_2)_3CH_2)$ ; 33.7  $(t, BrCH_2)$ ; 55.3 (q, MeO); 68.7, 70.7  $(2t, CH_2O, C(6'))$ ; 72.2, 72.6, 81.0 (3d, C(2'), C(3'), C(5')); 83.8 (d, C(4')); 87.3  $(s, Ar_2C(Ph))$ ; 89.0 (d, C(1')); 91.0  $(t, OCH_2O)$ ; 113.2 (d, arom. C); 123.4 (s, C(5)); 126.9 (s, arom. C); 127.7, 127.8, 128.2, 128.9, 130.3, 132.7 (6d, arom. C); 133.7, 136.7, 136.8 (3s, arom. C); 142.3 (d, C(8)); 146.2 (s, arom. C); 149.4 (s, C(4)); 151.8 (s, C(6)); 152.5 (d, C(2)); 158.7 (s, MeO-C); 164.3, 170.8 (2s, CO). FAB-MS: 1040  $(57, [M+H]^+)$ , 1039  $(39, M^+)$ , 1038  $(44, [M+H]^+)$ , 1037  $(42, M^+)$ , 303 (100).

N²-Acetyl-9-[6'-O-(5-bromopentyl)-5'-O-(4,4'-dimethoxytrityl)-2'-O-[[(triisopropylsilyl)oxy]methyl]- $\beta$ -D-allofuranosyl]guanine (10). As described for 8/11, with 7 (0.45 g, 0.58 mmol),  $^{\rm i}$ Pr<sub>2</sub>NEt (0.4 ml, 2.3 mmol), (CH<sub>2</sub>Cl)<sub>2</sub> (2 ml), Bu<sub>2</sub>SnCl<sub>2</sub> (176 mg, 0.58 mmol), and tom-Cl (130 mg, 0.58 mmol). Workup and CC (silica gel, hexane/AcOEt (+2% Et<sub>3</sub>N)) 3:7  $\rightarrow$  AcOEt (+2% Et<sub>3</sub>N)) gave 10 (0.31 g, 55%). Pale yellow foam. TLC

(AcOEt):  $R_f$  0.24. [a] $_D^{25} = -15.5$  (c = 1.0, CHCl $_3$ ). UV (MeOH): 282 (10900), 276 (11600), 260 (13200), 246 (11600), 231 (26100). IR (CHCl $_3$ ): 3215w, 3027m, 2945w, 2868m, 1704s, 1609m, 1559m, 1509m, 1464m, 1418s, 1374w, 1298m, 1251s, 1176w, 1118s, 1037m, 996w, 831w.  $^1$ H-NMR (300 MHz, CDCl $_3$ ): 1.01 – 1.07 (m,  $^1$ Pr $_3$ Si); 1.42 – 1.51 (m, BrCH $_2$ (CH $_2$ ) $_2$ ); 1.82 – 1.84 (m, Br(CH $_2$ ) $_3$ CH $_2$ ); 2.12 (s, Ac); 2.95 (dd, J = 3.1, 10.3, H – C(6°)); 3.13 – 3.17 (m, CH $_2$ O, OH – C(3')); 3.24 (dd, J = 4.3, 10.3, H' – C(6°)); 3.39 (t, J = 6.8, BrCH $_2$ ); 3.60 – 3.62 (m, H – C(5')); 3.77, 3.78 (2s, MeO); 4.23 (dd, J = 3.1, 3.4, H – C(4')); 4.51 – 4.55 (m, H – C(2')); 4.82 – 4.83 (m, H – C(3')); 4.89, 5.07 (2d, J = 5.0, OCH $_2$ O); 5.85 (d, J = 6.9, H – C(1')); 6.74 – 6.79 (m, 4 arom. H); 7.20 – 7.54 (m, 9 arom. H, H – C(8)); 8.43 (br. s, NH – C(6)); 11.95 (s, H – N(1)).  $^{13}$ C-NMR (75 MHz, CDCl $_3$ ): 11.8 (d, (Me $_2$ CH) $_3$ Si); 17.8 (q, (Me $_2$ CH) $_3$ Si); 24.4 (q, MeCO); 24.8 (t, Br(CH $_2$ ) $_2$ CH); 28.7 (t, BrCH $_2$ CH $_2$ ); 32.5 (t, Br(CH $_2$ ) $_3$ CH $_2$ ); 33.8 (t, BrCH $_2$ ); 55.3 (q, MeO); 69.9, 70.8 (2t, CH $_2$ O, C(6)); 72.5, 77.2, 81.5 (3d, C(2'), C(3'), C(5')); 85.2, 86.1 (2d, C(1'), C(4')); 87.2 (s, Ar $_2$ C(Ph)); 90.9 (t, OCH $_2$ O); 113.2, 113.3 (2d, arom. C); 121.6 (s, C(5)); 127.1, 127.9, 128.2, 128.4, 130.4, 130.5, (6d, arom. C); 136.3, 136.4 (2s, arom. C); 137.5 (d, C(8)); 146.1 (s, arom. C); 147.0 (s, C(4)); 148.5 (s, C(2)); 155.7 (s, C(6)); 158.7 (s, MeO – c); 171.2 (s, CO). FAB-MS: 994 (3, M+), 992 (3, M+), 693 (20), 691 (17), 303 (100).

 $1-[6'-O-(5-Bromopentyl)-5'-O-(4,4'-dimethoxytrityl)-2'-O-[[(triisopropylsilyl)oxy]methyl]-\beta-D-allofurano$ sylJuracil 3'-(2-Cyanoethyl Diisopropylphosphoramidite) (14). According to the G.P., with 8 (170 mg, 0.17 mmol). CC (Al<sub>2</sub>O<sub>3</sub>, hexane/AcOEt  $6:4 \rightarrow 3:7$ ) gave **14** (184 mg, 94%; 1:1 mixture of diastereoisomers). White foam. TLC (hexane/AcOEt 6:4): R<sub>f</sub> 0.39. UV (MeCN): 269 (9700), 238 (23100), 226 (19100). IR (CHCl<sub>3</sub>): 3408w, 3019w, 2965m, 2868w, 2360w, 1719m, 1694s, 1608m, 1509m, 1462m, 1386w, 1302w, 1252m, 1218m, 1178m, 1117w, 1036m, 980w, 882w, 828w. 1H-NMR (300 MHz, CDCl<sub>3</sub>): 0.95 - 1.05 (m, Pr<sub>3</sub>Si); 1.10 - 1.22  $(m, (Me_2CH)_2N); 1.37-1.42$   $(m, BrCH_2(CH_2)_2); 1.70-1.81$   $(m, Br(CH_2)_2CH_2); 2.53$  (t, J=6.7, 0.5 H, $OCH_2CH_2CN$ ); 2.54 ( $t, J = 6.2, 0.5 \text{ H}, OCH_2CH_2CN$ ); 2.62 ( $t, J = 6.2, 1 \text{ H}, OCH_2CH_2CN$ ); 2.97 – 3.11 (m, CH<sub>2</sub>O); 3.35-3.67 (m, BrCH<sub>2</sub>, H-C(5'), 2H-(6'), (Me<sub>2</sub>CH)<sub>2</sub>N); 3.80 (s, MeO); 4.30-4.36 (m, H-C(2'), H-C(4')); 4.68-4.81 (m, H-C(3')); 4.87, 4.92, 4.94, 4.97 (4d, J=5.0, OCH<sub>2</sub>O); 5.23 (d, J=8.1, I)H-C(5): 6.00 (d, J=5.8, 0.5 H, H-C(1')): 6.01 (d, J=7.5, 0.5 H, H-C(1')): 6.81 -6.85 (m, 4 arom, H): 7.06 -7.49 (m, 9 arom. H, H-C(6)); 8.21 (br. s, H-N(3)). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 12.0  $(d, (Me_2CH)_3Si)$ ; 17.8 (q, H-N(3)).  $(Me_2CH)_3Si)$ ; 20.2, 20.4,  $(2t, J = (C,P) = 6.1, OCH_2CH_2CN)$ ; 23.5  $(t, Br(CH_2)_2CH_2)$ ; 24.48, 24.50, 24.63, 24.69, 24.73, 24.74 (6q, Me<sub>2</sub>CHN); 28.7, 28.8 (2t, BrCH<sub>2</sub>CH<sub>2</sub>); 32.4, 32.6 (2t, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>); 33.6, 33.7 (2t, BrCH<sub>2</sub>); 43.4,  $43.6 (2d, J(C,P) = 4.9, Me_2CHN); 55.4 (q, MeO); 57.7 (t, (C,P) = 18.3, OCH_2CH_2CN); 58.7 (t, J(C,P) = 15.8, OCH_2CN); 58.7 (t, J(C,P) = 15.8, OCH_2CN); 58.7 (t, J(C,P) = 15.8, OCH_2CN); 58.7 (t, J(C,P) = 15.8, OCH_2CN)$ OCH<sub>2</sub>CH<sub>2</sub>CN); 68.8, 69.2, 71.6, 71.7 (4t, CH<sub>2</sub>O, C(6')); 70.7, 70.8, 70.9, 72.5 (4d, C(2'), C(3'), C(5')); 84.6, 85.6, 86.4, 87.0 (4d, C(1'), C(4')); 87.77, 87.81 (2s, Ar<sub>2</sub>C(Ph)); 89.3, 89.7 (2t, OCH<sub>2</sub>O); 102.5 (d, C(5)); 113.4, 113.5 (2d, arom. C); 117.8, 118.0 (2s, CN); 127.3, 128.1, 128.5, 130.5, 130.8, 130.9 (6d, arom. C); 136.28, 136.32, 136.42 (3s, arom. C); 141.0 (d, C(6)); 146.2, 146.3 (2s, arom. C); 150.3 (s, C(4)); 162.9 (2s, C(6)); 159.0, 159.1 (2s, MeO-C). <sup>31</sup>P-NMR (121 MHz, CDCl<sub>3</sub>): 150.7, 151.4. FAB-MS: 1114 (6,  $[M+H]^+$ ), 1113 (10,  $M^+$ ), 1112  $(7, [M+H]^+), 1111 (11, M^+), 303 (100).$ 

allofuranosyl]adenine 3'-(2-Cyanoethyl Diisopropylphosphoramidite) (15). According to the G.P. with 9 (560 mg, 0.17 mmol). CC (Al<sub>2</sub>O<sub>3</sub>, hexane/AcOEt  $8:2\rightarrow6:4$ ) gave **15** (605 mg, 90%; a 1:1 mixture of diastereoisomers). Pale yellow foam. TLC (hexane/AcOEt 5:5): R<sub>f</sub> 0.52. UV (MeCN): 277 (20400), 258 (14200), 234 (33300), 224 (31400). IR (CHCl<sub>3</sub>): 3406w, 3067w, 2945m, 2867w, 1709m, 1611s, 1545m, 1509m, 1457s, 1365w, 1300w, 1250w, 1179m, 1120m, 1082m, 980w, 932w, 828w. 1H-NMR (300 MHz, CDCl<sub>3</sub>): 0.75 - 0.81  $(m, {}^{1}\text{Pr}_{3}\text{Si}); 1.21 - 1.27 \ (m, (Me_{2}\text{CH})_{3}\text{N}); 1.45 - 1.50 \ (m, \text{BrCH}_{3}(CH_{2})_{2}); 1.72 - 1.84 \ (m, \text{Br(CH}_{2})_{3}\text{C}H_{2}); 2.53 -$ 2.57 (m, OCH<sub>2</sub>CH<sub>2</sub>CN); 2.94–2.97 (m, 1 H, OCH<sub>2</sub>CH<sub>2</sub>CN); 3.05–3.11 (m, CH<sub>2</sub>O); 3.25–3.28 (m, 1 H,  $OCH_2CH_2CN$ ); 3.36-3.42 (m, 1 H, BrCH<sub>2</sub>); 3.48-3.55 (m, 1 H, BrCH<sub>2</sub>); 3.66-3.74 (m, 2 H-C(6'),  $(Me_2CH)_2N)$ ; 3.78 (s, MeO); 3.81 – 3.87 (m, H–C(5')); 4.60 – 4.94 (m, H–C(2'), H–C(3'), H–C(4'), OCH<sub>2</sub>O); 5.98 (d, J = 7.4, 0.5 H, H - C(1')); 6.02 (d, J = 7.4, 0.5 H, H - C(1')); 6.81 - 6.85 (m, 4 arom, H); 7.21 - 7.61 (m, 12 arom. H); 7.89, 7.91 (2s, H-C(2)); 8.00-8.02 (m, 2 arom. H); 8.58, 8.61 (2s, H-C(8)); 9.02 (br. s, 4.50); 9.0NH-C(4)). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 11.9 (d, (Me<sub>2</sub>CH)<sub>3</sub>Si); 17.5 (q, (Me<sub>2</sub>CH)<sub>3</sub>Si); 20.2, 20.3 (2t, J(C,P) = 6.8,  $CH_2CN$ ); 23.6  $(t, Br(CH_2)_2CH_2)$ ; 24.51, 24.55, 24.61, 24.70, 24.72  $(5q, Me_2CHN)$ ; 28.90, 28.96  $(2t, BrCH_2CH_2); 32.4, 32.5 (2t, Br(CH_2)_3CH_2); 33.8, 34.0 (2t, BrCH_2); 43.4 (d, J = (C,P) = 12.1, Me_2CHN);$  $45.1 (d, J(C,P) = 4.9, Me_2CHN)$ ; 55.3 (q, MeO);  $57.9, 58.4 (2t, J(C,P) = 17.7, OCH_2CH_2CN)$ ; 67.8, 68.0, 70.5, 70.6 $(4t, CH_2O, C(6')); 72.0, 72.3, 72.8, 73.0, 75.9, 76.4 (6d, C(2'), C(3'), C(5')); 84.0, 84.7, 87.6, 88.0 (4d, C(1'), C(4'));$ 87.0 (s, Ar<sub>2</sub>C(Ph)); 89.1, 89.5 (2t, OCH<sub>2</sub>O); 113.0 (d, arom. C); 117.7, 117.8 (2s, CN); 123.6 (d, C(5)); 127.0, 127.8, 128.6, 128.9, 130.2, 130.4, 130.5, 133.8 (8d, arom. C); 132.8, 136.8, 136.9, 137.0, 137.1 (5s, arom. C); 143.2, 143.3 (2d, C(8)); 145.8 (s, arom. C); 149.4 (s, C(4)); 151.3, 151.5 (2s, C(6)); 152.6 (d, C(2)); 158.6 (s, MeO-C); 164.4 (s, CO). <sup>31</sup>P-NMR (121 MHz, CDCl<sub>3</sub>): 150.5, 151.4. FAB-MS: 1240  $(5, [M+H]^+)$ , 1239  $(7, M^+)$ , 1238  $(6, [M+H]^+)$ , 1237  $(8, M^+)$ , 303 (100).

N<sup>2</sup>-Acetyl-9-[6'-O-(5-bromopentyl)-5'-O-(4,4'-dimethoxytrityl)-2'-O-[[(triisopropylsilyl)oxy]methyl]-a-Dallofuranosyl]guanine 3'-(2-Cyanoethyl Diisopropylphosphoramidite) (16). According to the G.P., with 10 (170 mg, 0.17 mmol). CC (Al<sub>2</sub>O<sub>3</sub>, hexane/AcOEt 6:4 to 3:7) gave **16** (164 mg, 80%; 1:1 mixture of diastereoisomers). Pale yellow foam. TLC (hexane/AcOEt 2:8):  $R_f$  0.50. UV (MeCN): 276 (13500), 270 (13000), 239 (24500), 228 (22200). IR (CHCl<sub>3</sub>): 3213w, 3012m, 2945m, 2868w, 2361w, 1695s, 1609s, 1559w, 1509m, 1464m, 1403w, 1371m, 1301m, 1252s, 1179m, 1127m, 1036s, 981w, 882w, 828w, 1H-NMR (300 MHz,  $CDCl_2$ ): 0.90 – 1.07 (m,  $Pr_2Si$ ): 1.11 – 1.42 (m,  $(Me_2CH)_2N$ ,  $BrCH_2(CH_2)_2$ ): 1.72 – 1.79 (m,  $Br(CH_2)_2CH_2$ ): 2.15. 2.17 (2s, MeCO); 2.74 – 2.78 (m, OCH<sub>2</sub>CH<sub>2</sub>CN); 2.98 – 3.15 (m, CH<sub>2</sub>O); 3.35 – 3.61 (m, OCH<sub>2</sub>CH<sub>2</sub>CN, BrCH<sub>2</sub>)  $2 \text{ H} - \text{C(6')}, (\text{Me}_2\text{C}H)_2\text{N}); 3.763, 3.767, 3.774, 3.778 (4s, \text{MeO}); 3.88 - 3.91 (m, \text{H} - \text{C(5')}); 4.22 - 4.42$ (m, H-C(2'), H-C(4')); 4.62-4.92 (m, H-C(3'), OCH<sub>2</sub>O); 5.80 (d, J=5.3, 0.5 H, H-C(1')); 5.96 (d, J=7.5, 0.5 H, H-C(1')); 5.96 (d,0.5 H, H - C(1'); 6.74 - 6.84 (m, 4 arom. H); 7.21 - 7.53 (m, 9 arom. H); 9.03 - 9.11 (m, NH - C(2)); 11.96 - 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07 + 12.07(m, H-N(1)). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 11.9  $(d, (Me_2CH)_3Si)$ ; 17.9  $(q, (Me_2CH)_3Si)$ ; 20.3, 20.4 (2t, J(C,P) = 1)7.2, OCH<sub>2</sub>CH<sub>2</sub>CN); 24.3 (q, MeCO); 24.8 (t, Br(CH<sub>2</sub>)<sub>2</sub>CH<sub>2</sub>); 24.46, 24.51, 24.59, 24.64 (4q, Me<sub>2</sub>CHN); 28.6, 28.7 (2t, BrCH<sub>2</sub>CH<sub>2</sub>); 32.4, 32.6 (2t, Br(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>); 33.6, 33.7 (2t, BrCH<sub>2</sub>); 43.4, 43.5 (2t, J(C,P) = 11.1, Me<sub>2</sub>CHN);55.3 (q, MeO); 57.8  $(t, J(C,P) = 8.7, OCH_2CH_2CN)$ ; 58.7  $(t, J(C,P) = 18.8, OCH_2CH_2CN)$ ; 68.7, 69.2, 70.9, 71.2  $(4t, CH_2O, C(6')); 74.3, 74.5, 77.2, 78.1, 87.4, 87.9 (6d, C(2'), C(3'), C(5')); 84.9, 85.3 (2d, C(4')); 87.4, 87.9 (2d, C($ C(1')); 87.3 (s, Ar<sub>2</sub>C(Ph)); 90.4, 90.6 (2t, OCH<sub>2</sub>O); 113.3 (d, arom. C); 117.7, 117.8 (2s, CN); 122.2 (d, C(5)); 127.3, 127.4, 128.1, 128.4, 128.5, 128.7, 130.4 (7d, arom. C); 135.4, 135.5, 136.1 (3s, arom. C); 137.8, 138.4 (2d, C(8)); 145.5, 146.1 (2s, arom. C); 147.7, 147.8 (2s, C(4)); 148.7, 148.9 (2s, C(2)); 155.2, 155.3 (2s, C(6)); 158.8, 158.9 (2s, MeO-C); 170.1 (s, CO). <sup>31</sup>P-NMR (121 MHz, CDCl<sub>3</sub>): 150.4, 150.0. FAB-MS: 1195 (4,  $[M+H]^+$ ), 1194  $(6, M^+)$ , 1193  $(4, [M+H]^+)$ , 1192  $(5, M^+)$ , 303 (100).

*1-Bromo-3-[(methylthio)methoxy]propane* (**33**). A soln. of 3-bromopropanol (8.8 g, 0.1 mol), DMSO (108 ml, 1.8 mol), Ac<sub>2</sub>O (94 ml, 1.0 mol), and AcOH (68 ml, 1.2 mol) was kept at r.t. for 7 days. Extraction (hexane/sat. NaHCO<sub>3</sub> soln.) and distillation (75°/10 Torr) gave **33** (10 g, 50%). Yellow liquid. <sup>1</sup>H-NMR (300 MHz): 1.98–2.03 (*m*, CH<sub>2</sub>); 2.14 (*s*, MeS); 3.37 (*t*, *J* = 6.5, BrCH<sub>2</sub>); 3.51 (*t*, *J* = 5.4, CH<sub>2</sub>O); 4.63 (*s*, OCH<sub>2</sub>S). <sup>13</sup>C-NMR (75 MHz): 29.9 (*t*, CH<sub>2</sub>); 31.6 (*q*, MeS); 32.2 (*t*, BrCH<sub>2</sub>); 66.5 (*t*, CH<sub>2</sub>O); 74.4 (*t*, OCH<sub>2</sub>S).

1-Bromo-3-(chloromethoxy)propane (34). SO<sub>2</sub>Cl<sub>2</sub> (4.3 ml, 0.1 mol) was added dropwise to a soln. of 33 (10 g, 0.05 mol) in CH<sub>2</sub>Cl<sub>2</sub> (240 ml) at 0°. The soln. was stirred at r.t. for 1 h. Evaporation and distillation (53°/0.3 Torr) gave 34 (4.7 g, 42%). Yellow liquid. <sup>1</sup>H-NMR (300 MHz): 2.02-2.10 (m, CH<sub>2</sub>); 3.43 (t, J=6.4, BrCH<sub>2</sub>); 3.61 (t, J=5.0, CH<sub>2</sub>O); 4.63 (s, ClCH<sub>2</sub>O). <sup>13</sup>C-NMR (75 MHz): 30.1 (t, CH<sub>2</sub>); 32.7 (t, BrCH<sub>2</sub>); 66.5 (t, CH<sub>2</sub>O); 82.0 (t, ClCH<sub>2</sub>O).

2'-O-[(3-Bromopropoxy)methyl]-5'-O-(4,4'-dimethoxytrityl)uridine (21) and 3'-O-[(3-Bromopropoxy)-methyl]-5'-O-(4,4'-dimethoxytrityl)uridine (25). A soln. of 17 (1.1 g, 2.0 mmol) and  $^{1}$ Pr<sub>2</sub>NEt (1.4 ml, 8 mmol) in (CH<sub>2</sub>Cl)<sub>2</sub> (6 ml) was treated with Bu<sub>2</sub>SnCl<sub>2</sub> (608 mg, 2.0 mmol) at r.t. for 1 h. Then the mixture was heated to 70°, treated with 34 (488 mg, 2.6 mmol), and stirred at 70° for 15 min. Workup and CC (silica gel, hexane/AcOEt (+2% Et<sub>3</sub>N) 5:5  $\rightarrow$  AcOEt (+2% Et<sub>3</sub>N)) gave 21 (530 mg, 38%) and 25 (418 mg, 30%) as pale yellow foams.

Data of **21**: TLC (hexane/AcOEt 7:3):  $R_1$  0.55.  $[a]_{25}^{15} = 17.1$  (c = 1.0, CHCl<sub>3</sub>). UV (MeOH): 264 (9700), 256 (9500), 233 (22900), 227 (22300). IR (CHCl<sub>3</sub>): 3391w, 3018m, 2959w, 1691s, 1608w, 1510m, 1461w, 1390w, 1299w, 1276w, 1253m, 1221m, 1178m, 1102w, 1036m, 909w, 830w. <sup>1</sup>H-NMR: 2.07–2.15 (m, CH<sub>2</sub>); 2.67 (br. s, OH–C(3')); 3.50 (t, J = 6.4, BrCH<sub>2</sub>); 3.54–3.78 (m, CH<sub>2</sub>O, 2 H–C(5')); 3.80 (s, 2 MeO); 4.07–4.09 (m, H–C(4')); 4.26 (dd, J = 2.8, 5.3, H–C(2')); 4.47–4.49 (m, H–C(3')); 4.90, 5.00 (2d, J = 6.9, OCH<sub>2</sub>O); 5.29 (d, J = 8.1, H–C(5)); 6.01 (d, J = 2.8, H–C(1')); 6.82–6.87 (m, 4 arom. H); 7.22–7.40 (m, 9 arom. H); 7.96 (d, J = 8.1, H–C(6)). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 30.1 (t, CH<sub>2</sub>); 32.4 (t, BrCH<sub>2</sub>); 55.3 (t, MeO); 62.1, 66.1 (2t, CH<sub>2</sub>O, C(5')); 74.6, 75.4, 81.9 (3t, C(2'), C(3'), C(4')); 87.1 (t, Ar<sub>2</sub>C(Ph)); 89.6 (t, C(1')); 95.5 (t, OCH<sub>2</sub>O); 102.5 (t, C(5)); 113.3 (t, arom. C); 127.3, 128.1, 128.2, 128.4, 130.1 (5t, arom. C); 135.1, 135.2 (2t, arom. C); 140.0 (t, C(6)); 144.2 (t, arom. C); 150.7 (t, C(2)); 158.8 (t, MeO–t); 163.2 (t, C(4)). FAB-MS: 699 (t, [t + H]<sup>+</sup>), 698 (11, t +), 697 (7, [t + H]<sup>+</sup>), 696 (12, t +), 303 (100).

Data of **25**: TLC (hexane/AcOEt 3:7):  $R_1$  0.43.  $[a]_2^{15} = 27.1$  (c = 1.0, CHCl<sub>3</sub>). UV (MeOH): 264 (9700), 257 (9400), 234 (22100), 227 (21300). IR (CHCl<sub>3</sub>): 3556w, 3390w, 2959w, 1690s, 1608w, 1510m, 1461m, 1391w, 1300w, 1253s, 1226m, 1177m, 1101m, 1036m, 909w, 830w.  $^1$ H-NMR: 2.02 – 2.06 (m, CH<sub>2</sub>); 3.37 – 3.70 (m, OH – C(2'), BrCH<sub>2</sub>, CH<sub>2</sub>O, 2 H – C(5')); 3.80 (s, 2 MeO); 4.25 – 4.32 (m, H – C(2'), H – C(3'), H – C(4')); 4.74, 4.78 (2d, d = 6.8, OCH<sub>2</sub>O); 5.37 (d, d = 8.4, H – C(5)); 5.95 (d, d = 3.4, H – C(1')); 6.83 – 6.86 (m, 4 arom. H); 7.24 – 7.39 (m, 9 arom. H); 7.83 (d, d = 8.1, H – C(6)); 8.91 (br. s, H – N(3)).  $^{13}$ C-NMR (75 MHz, CDCl<sub>3</sub>): 30.3 (t, CH<sub>2</sub>); 32.4 (t, BrCH<sub>2</sub>); 55.3 (t, MeO); 61.7, 66.4 (2t, CH<sub>2</sub>O, C(5')); 69.0, 80.0, 83.5 (3t, C(2'), C(3'), C(4')); 87.2

 $(s, Ar_2C(Ph)); 87.7 (d, C(1')); 95.3 (t, OCH_2O); 102.3 (d, C(5)); 113.3 (d, arom. C), 127.2, 128.1, 128.2, 130.1, 130.2 (5d, arom. C); 128.4, 135.1, 135.2 (3s, arom. C); 140.0 (d, C(6)); 144.3 (s, arom. C); 150.2 (s, C(2)); 158.7, 158.8 (2s, MeO-C); 163.3 (s, C(4)). FAB-MS (NOBA, pos. mode): 699 (12, <math>[M+H]^+$ ), 698 (9,  $M^+$ ), 697 (8,  $[M+H]^+$ ), 696 (14,  $M^+$ ), 303 (100).

N<sup>6</sup>-Acetyl-2'-O-[(3-bromopropoxy)methyl]-5'-O-(4,4'-dimethoxytrityl)adenosine (22) and N<sup>6</sup>-Acetyl-3'-O-[(3-bromopropoxy)methyl]-5'-O-(4,4'-dimethoxytrityl)adenosine (26). As described for 21/25, with 18 (1.5 g, 2.5 mmol),  $Pr_2NEt$  (1.7 ml, 10 mmol),  $CH_2Cl_2$  (10 ml),  $Pr_2NEt$  (1.7 ml, 10 mmol),  $Pr_2NEt$  (1.7 ml, 10 mmol), Pr

Data of 22: TLC (AcOEt/EtOH 9:1):  $R_1$  0.54. [ $\alpha$ ] $_{25}^{25}$  = 1.3 (c = 1.0, CHCl $_{3}$ ). UV (MeOH): 272 (17900), 253 (12500), 234 (18400). IR (CHCl $_{3}$ ): 3374w, 3028w, 2934w, 1728w, 1703m, 1608s, 1588m, 1509m, 1463m, 1375w, 1297m, 1251m, 1233m, 1208s, 1177m, 1098m, 1037m, 913w, 829w.  $^{1}$ H-NMR: 1.80 – 1.98 (m, CH $_{2}$ ); 2.16 (s, MeCO); 2.78 (d, J = 5.0, OH – C(3')); 3.37 (t, J = 6.5, BrCH $_{2}$ ); 3.41 – 3.67 (m, CH $_{2}$ O, 2 H – C(5')); 3.78 (s, MeO); 4.25 – 4.28 (m, H – C(4')); 4.53 – 4.56 (m, H – C(3')); 4.83 (s, OCH $_{2}$ O); 4.94 (dd, J = 5.0, 5.4, H – C(2')); 6.23 (d, J = 5.4, H – C(1')); 6.78 – 6.83 (m, 4 arom. H); 7.19 – 7.44 (m, 9 arom. H); 8.18 (s, H – C(2)); 8.61 (s, H – C(8)); 8.66 (br. s, NH – C(6)).  $^{13}$ C-NMR (75 MHz, CDCl $_{3}$ ): 25.6 (q, MeCO); 29.9 (t, CH $_{2}$ ); 32.2 (t, BrCH $_{2}$ ); 55.3 (q, MeO); 63.1, 66.3 (2t, CH $_{2}$ O, C(5')); 78.2, 80.1, 84.1 (3d, C(2'), C(3'), C(4')); 87.1 (s, Ar $_{2}$ C(Ph)); 89.5 (d, C(1')); 95.9 (t, OCH $_{2}$ O); 113.4 (t, arom. C); 127.0, 127.9, 128.1, 130.1 (4t, arom. C); 128.4, 135.5, 135.6 (3t, arom. C); 141.6 (t, C(8)); 144.4 (t, arom. C); 149.4 (t, C(4)); 151.0 (t, C(6)); 152.5 (t, C(2)); 158.6 (t, MeO – t). FAB-MS: 765 (47, [t] H + H]+), 764 (100, t), 763 (59, [t] H + H]+), 762 (94, t), 303 (51).

Data of **26**: TLC (AcOEt/EtOH 9:1):  $R_{\rm f}$  0.43.  $[a]_{\rm D}^{25} = -5.7$  (c = 1.0, CHCl<sub>3</sub>). UV (MeOH): 271 (18200), 253 (13500), 234 (24700), 229 (24300). IR (CHCl<sub>3</sub>): 3373w, 3016m, 2935w, 1729w, 1704m, 1609s, 1588m, 1509m, 1462m, 1375w, 1296m, 1252m, 1226m, 1206s, 1177m, 1086w, 1036m, 912w, 833w. <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>): 2.04 – 2.08 (m, CH<sub>2</sub>); 2.61 (s, MeCO); 3.17 – 3.71 (m, BrCH<sub>2</sub>, CH<sub>2</sub>O, 2 H – C(5')); 3.77, 3.78 (2s, MeO); 4.09 (br. s, OH – C(2')); 4.37 – 4.39 (m, H – C(4')); 4.48 (dd, J = 3.4, 5.0, H – C(3')); 4.80, 4.84 (2d, J = 6.7, OCH<sub>2</sub>O); 4.82 – 4.88 (m, H – C(2')); 6.04 (d, J = 5.6, H – C(1')); 6.73 – 6.82 (m, 4 arom. H); 7.16 – 7.38 (m, 9 arom. H); 8.19 (s, H – C(2)); 8.62 (s, H – C(8)); 8.71 (br. s, NH – C(6)). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 25.7 (q, MeCO); 30.1 (t, CH<sub>2</sub>); 32.4 (t, BrCH<sub>2</sub>); 55.2 (q, MeO); 63.0, 66.0 (2t, CH<sub>2</sub>O, C(5')); 74.47, 77.0, 83.2 (3t, C(2'), C(3'), C(4')); 86.7 (s, Ar<sub>2</sub>C(Ph)); 89.4 (t, C(1')); 95.7 (t, OCH<sub>2</sub>O); 113.2 (t, arom. C); 122.1 (t, C(5)); 127.0, 127.9, 128.1, 130.1 (4t, arom. C); 135.5, 135.6 (2t, arom. C); 141.5 (t, (8)); 144.4 (t, arom. C); 149.3 (t, C(4)); 152.3 (t, C(6)); 158.6 (t, MeO – t). FAB-MS: 765 (34, t, t) t, 764 (67, t), 763 (34, t) t) t) 762 (64, t), 303 (100).

 $N^2$ -Acetyl-2'-O-[(3-bromopropoxy)methyl]-5'-O-(4,4'-dimethoxytrityl)guanosine (23) and  $N^2$ -Acetyl-3'-O-[(3-bromopropoxy)methyl]-5'-O-(4,4'-dimethoxytrityl)guanosine (27). As described for 21/25, with 19 (1.57 g, 2.5 mmol),  ${}^{1}$ Pr<sub>2</sub>NEt (1.7 ml, 10 mmol),  ${}^{1}$ CH<sub>2</sub>Cl)<sub>2</sub> (10 ml),  ${}^{1}$ Bu<sub>2</sub>SnCl<sub>2</sub> (760 mg, 2.5 mmol), and 34 (470 mg, 2.5 mmol). Workup and CC (silica gel, hexane/AcOEt (+2% Et<sub>3</sub>N) 5:5  $\rightarrow$  AcOEt (+2% Et<sub>3</sub>N)) gave 23 (1.18 g, 60%) as a pale yellow foam and 0.1 g of a mixture of by-products. From this mixture, 27 was isolated by prep. TLC (CH<sub>2</sub>Cl<sub>2</sub>/MeOH 9:1) as a pale yellow foam.

Data of 23: TLC (AcOEt/EtOH 9:1):  $R_f$  0.48.  $[\alpha]_D^{55} = 1.5$  (c = 1.0, CHCl<sub>3</sub>). UV (MeOH): 275 (13000), 271 (12900), 235 (26700), 226 (25200). IR (CHCl<sub>3</sub>): 3369w, 3222w, 3022m, 2935w, 1703s, 1674s, 1563m, 1509m, 1463w, 1411m, 1301w, 1253m, 1226s, 1178w, 1095m, 1036m, 996w, 830w. <sup>1</sup>H-NMR: 1.76 (s, MeCO); 1.94–1.97 (m, CH<sub>2</sub>); 3.18 (br. s, OH–C(3')); 3.22–3.73 (m, BrCH<sub>2</sub>, CH<sub>2</sub>O, 2 H–C(5')); 3.75, 3.76 (2s, MeO); 4.21 (br. s, H–C(4')); 4.23 (br. s, H–C(3')); 4.74, 4.80 (2d, J = 6.8, OCH<sub>2</sub>O); 5.07–5.10 (m, H–C(2')); 5.70 (d, J = 6.2, H–C(1')); 6.75–6.84 (m, 4 arom. H); 7.15–7.50 (m, 9 arom. H); 7.87 (s, H–C(8)); 8.73 (s, NH–C(6)); 11.94 (s, H–N(1)). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 23.7 (g, MeCO); 30.1 (t, CH<sub>2</sub>); 32.2 (t, BrCH<sub>2</sub>); 55.3 (g, MeO); 63.8, 66.1 (2t, CH<sub>2</sub>O), C(5')); 70.5, 78.9, 84.3 (3d, C(2'), C(3'), C(4')); 86.5 (d, C(1')); 87.1 (s, Ar<sub>2</sub>C(Ph)); 95.7 (t, OCH<sub>2</sub>O); 113.3 (d, arom. C); 122.0 (s, C(5)); 127.2, 128.1, 128.4, 130.1 (4d, arom. C); 135.5, 135.9 (2s, arom. C); 139.0 (d, C(8)); 144.9 (s, arom. C); 147.2 (s, C(4)); 148.4 (s, C(4)); 155.6 (s, C(6)); 158.8 (s, MeO –C); 171.9 (s, CO). FAB-MS: 781 (36, [m + H]<sup>+</sup>), 780 (52, m<sup>+</sup>), 779 (18, [m + H]<sup>+</sup>), 778 (69, m<sup>+</sup>), 303 (100).

Data of **27**: TLC (AcOEt/EtOH 9:1):  $R_1$  0.40. <sup>1</sup>H-NMR: 1.64 – 1.67 (m, CH<sub>2</sub>); 1.79 (s, MeCO); 3.11 – 3.16 (m, H – C(5')); 3.26 – 3.58 (m, BrCH<sub>2</sub>, CH<sub>2</sub>O, H' – C(5')); 3.74, 3.76 (2s, MeO); 4.10 – 4.12 (m, H – C(4')); 4.30 – 4.33 (m, OCH<sub>2</sub>O); 4.45 – 4.48 (m, H – C(3')); 4.51 (br. d, J = 5.0, OH – C(2')); 4.98 – 5.02 (m, H – C(2')); 6.00 (d, J = 6.5, H – C(1')); 6.71 – 6.83 (m, 4 arom. H); 7.10 – 7.46 (m, 9 arom. H); 7.81 (s, H – C(8)); 8.92 (br. s, NH – C(6)); 11.95 (br. s, H – N(1)). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 23.6 (q, MeCO); 30.2 (t, CH<sub>2</sub>); 31.6 (t, BrCH<sub>2</sub>); 55.1 (q, MeO); 62.4, 64.8 (t, CH<sub>2</sub>O, C(5')); 68.7, 74.9, 82.6 (3t, C(2'), C(3'), C(4')); 86.9 (t, C(1')); 87.9 (t, Ar<sub>2</sub>C(Ph)); 94.8 (t, OCH<sub>2</sub>O); 113.2 (t, arom. C); 123.8 (t, C(5)); 128.0, 128.2, 128.5, 130.1 (4t, arom. C);

135.1, 135.6 (2s, arom. C); 138.7 (d, C(8)); 144.9 (s, arom. C); 147.9 (s, C(4)); 148.4 (s, C(4)); 155.5 (s, C(6)); 158.7 (s, MeO-C); 172.1 (s, CO). FAB-MS: 780 (10,  $M^+$ ), 778 (8,  $M^+$ ), 653 (4), 561 (5), 303 (100).

N<sup>4</sup>-Acetyl-2'-O-[(3-bromopropoxy)methyl]-5'-O-(4,4'-dimethoxytrityl)cytidine (24) and N<sup>4</sup>-Acetyl-3'-O-[(3-bromopropoxy)methyl]-5'-O-(4,4'-dimethoxytrityl)cytidine (28). As described for 21/25, with 20 (1.47 g, 2.5 mmol),  $^{12}$ Pr<sub>2</sub>NEt (1.7 ml, 10 mmol), (CH<sub>2</sub>Cl)<sub>2</sub> (10 ml), Bu<sub>2</sub>SnCl<sub>2</sub> (760 mg, 2.5 mmol), and 34 (610 mg, 3.3 mmol). Workup and CC (silica gel, hexane/AcOEt (+2% Et<sub>3</sub>N) 7:3  $\rightarrow$  AcOEt/EtOH 9:1 (+2% Et<sub>3</sub>N)) gave 24 (833 mg, 45%) and 28 (370 mg, 20%) as pale yellow foams.

Data of **24**: TLC (AcOEt/EtOH 9 : 1):  $R_1$  0.63. [ $\alpha$ ] $_{25}^{15}$  = 40.9 (c = 1.0, CHCl $_3$ ). UV (MeOH): 299 (6600), 290 (6100), 283 (6500), 278 (6000), 271 (5800), 236 (26700), 226 (23300). IR (CHCl $_3$ ): 3401w, 3011m, 2961w, 1723m, 1661s, 1610m, 1554m, 1504m, 1462s, 1362m, 1306m, 1252m, 1224s, 1206w, 1177m, 1102m, 1036m, 909w, 829w. <sup>1</sup>H-NMR: 2.06 − 2.14 (m, CH $_2$ ); 2.22 (s, MeCO); 2.71 (d, J = 9.3, OH −C(3')); 3.48 (t, J = 6.4, BrCH $_2$ ); 3.52 − 3.74 (m, CH $_2$ O, 2 H −C(5')); 3.81, 3.82 (2s, MeO); 4.11 −4.13 (m, H −C(4')); 4.24 (br. d, J ≈ 5.0, H −C(2')); 4.43 −4.46 (m, H −C(3')); 4.95, 5.17 (2d, J = 6.5, OCH $_2$ O); 5.99 (s, H −C(1')); 6.85 −6.89 (m, 4 arom. H); 7.08 −7.44 (m, 9 arom. H, H −C(5)); 8.47 (d, J = 7.4, H −C(6)); 9.21 (br. s, NH −C(4)). <sup>13</sup>C-NMR (75 MHz, CDCl $_3$ ): 24.9 (g, g) (g) (

Data of **28**: TLC (AcOEt/EtOH 9:1):  $R_1$  0.53. [ $\alpha$ ] $_{0.53}^{15} = 11.8$  (c = 1.0, CHCl $_{3}$ ). UV (MeOH): 299 (5600), 290 (5100), 284 (5400), 271 (4700), 236 (23300), 227 (20900). IR (CHCl $_{3}$ ): 3400 $_{0.00}$ , 3012 $_{0.00}$ , 2960 $_{0.00}$ , 1724 $_{0.00}$ , 1658 $_{0.00}$ , 1610 $_{0.00}$ , 1554 $_{0.00}$ , 1510 $_{0.00}$ , 1482 $_{0.00}$ , 1444 $_{0.00}$ , 1382 $_{0.00}$ , 1397, 1252 $_{0.00}$ , 1114 $_{0.00}$ , 1390 $_{0.00}$ , 1114 $_{0.00}$ , 1390 $_{0.00}$ , 1390 $_{0.00}$ , 1114 $_{0.00}$ , 1390 $_{0.00}$ , 1390 $_{0.00}$ , 1391 $_{0.00}$ , 1391 $_{0.00}$ , 1391 $_{0.00}$ , 1391 $_{0.00}$ , 1391 $_{0.00}$ , 1391 $_{0.00}$ , 1391 $_{0.00}$ , 1391 $_{0.00}$ , 1391 $_{0.00}$ , 1427 $_{0.00}$ , 1427 $_{0.00}$ , 1427 $_{0.00}$ , 1427 $_{0.00}$ , 1528 $_{0.00}$ , 1528 $_{0.00}$ , 15391 $_{0.00}$ , 15391 $_{0.00}$ , 1540 $_{0.00}$ , 1540 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550 $_{0.00}$ , 1550

2'-O-[(3-Bromopropoxy)methyl]-5'-O-(4,4'-dimethoxytrityl)uridine 3'-(2-Cyanoethyl Diisopropylphosphoramidite) (29). According to the G.P., with 21 (373 mg, 0.53 mmol). CC (Al<sub>2</sub>O<sub>3</sub>, hexane/AcOEt 8:2 to 3:7) gave 29 (434 mg, 91%; 1:1 mixture of diastereoisomers). Pale yellow foam. TLC (hexane/AcOEt 5:5): R<sub>f</sub> 0.42. UV (MeCN): 265 (22300), 236 (20900), 225 (18200). IR (CHCl<sub>3</sub>): 3390w, 3026s, 2973w, 2360w, 1806m, 1697s, 1608w, 1509m, 1458w, 1414w, 1395w, 1251s, 1178w, 1098w, 1034m, 1004m, 835w. 1H-NMR (300 MHz,  $CDCl_3$ ); 1.03 – 1.29 (m, (Me<sub>2</sub>CH<sub>2</sub>N); 2.07 – 2.13 (m, CH<sub>2</sub>); 2.43 (t, J = 6.4, 1 H, OCH<sub>2</sub>CH<sub>2</sub>CN); 2.66 (t, J = 6.0, 1 H, OCH<sub>2</sub>CH<sub>2</sub>CN); 3.40-3.77 (m, 2 H-C(5'), OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Br, OCH<sub>2</sub>CH<sub>2</sub>CN, (Me<sub>2</sub>CH)<sub>2</sub>N); 3.80, 3.83(2s, MeO); 4.18-4.19, 4.26-4.28 (2m, H-C(4')); 4.37-4.39, 4.42-4.45 (2m, H-C(2')); 4.52-4.58(m, H-C(3')); 4.82-4.93 (m, OCH<sub>2</sub>O); 5.24 (d, J=8.4, 0.5 H, H-C(5)); 5.28 (d, J=8.1, 0.5 H, H-C(5));6.05 (d, J=3.7, 0.5 H, H-C(1')); 6.09 (d, J=4.0, 0.5 H, H-C(1')); 6.82-6.86 (m, 4 arom. H); 7.24-7.42 (m, 9 arom. H); 7.90, 7.96 (2d, J = 8.1, H - C(6)). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 20.3 (br. t, CH<sub>2</sub>CN); 24.5 (br. q,  $Me_2$ CHN); 30.4 (t, CH<sub>2</sub>); 32.6 (t, BrCH<sub>2</sub>); 43.2, 43.3 (2 br. d,  $Me_2$ CHN); 55.3 (q, MeO); 58.1, 58.2 (2t, J(C,P) = 18.5, OCH<sub>2</sub>CH<sub>2</sub>CN); 61.5, 63.9, 65.9, 66.2 (4t, CH<sub>2</sub>O, C(5')); 68.0, 70.4, 73.9, 75.5, 82.7, 82.8 (6d, C(2'), C(3'), C(4')); 87.1, 87.2 (2d, C(1')); 87.7, 87.8 (2s,  $Ar_2C(Ph)$ ); 95.0 (t,  $OCH_2O$ ); 102.5, 102.6 (2d, C(5)); 113.3 (s, arom. C); 117.4, 117.6 (2s, CN); 127.2, 128.0, 128.2, 128.3, 130.3 (5d, arom. C); 134.9, 135.1, 135.2 (3s, arom. C); 140.0 (d, C(6)); 144.2, 144.3 (2s, arom. C); 150.06, 150.13 (2s, C(2)); 158.8 (s, MeO - C); 162.9 (s, C(4)). <sup>31</sup>P-NMR (121 MHz, CDCl<sub>3</sub>): 150.5, 151.2. FAB-MS: 900  $(7, [M+H]^+)$ , 899  $(16, M^+)$ , 898  $(8, [M+1]^+)$  $H]^+$ ), 897 (21,  $M^+$ ), 595 (68), 593 (64), 303 (100).

N<sup>6</sup>-Acetyl-2'-O-[(3-bromopropoxy)methyl]-5'-O-(4,4'-dimethoxytrityl)adenosine 3'-(2-Cyanoethyl Diisopropylphosphoramidite) (**30**). According to the *G.P.*, with **22** (705 mg, 0.87 mmol). CC (Al<sub>2</sub>O<sub>3</sub>, hexane/AcOEt 6:4 to 9:1) gave **30** (760 mg, 92%; 1:1 mixture of diastereoisomers). Pale yellow foam. TLC (hexane/AcOEt 2:8):  $R_{\rm f}$  0.35. UV (MeCN): 271 (19300), 254 (14700), 236 (22300), 229 (20800). IR (CHCl<sub>3</sub>): 3014m, 2974m, 2337m, 1806m, 1706m, 1610m, 1590m, 1509m, 1462m, 1412m, 1373m, 1252m, 1180m, 1097m, 1035m, 1003m, 839m. H-NMR (300 MHz, CDCl<sub>3</sub>): 1.06–1.29 (m, ( $Me_2$ CH)<sub>2</sub>N); 1.78–1.96 (m, CH<sub>2</sub>); 2.39 (t, t = 5.6, 0.8 H, OCH<sub>2</sub>CH<sub>2</sub>CN); 2.60 (t, MeCO); 2.65 (t, t = 5.6, 1.2 H, OCH<sub>2</sub>CH<sub>2</sub>CN); 3.27–3.73 (t = 0.5 (t + 0.5 (t +

 $(m, 0.4 \text{ H}, \text{H}-\text{C}(4')); 4.65-4.67 \ (m, \text{H}-\text{C}(3')); 4.69-4.85 \ (m, \text{OCH}_2\text{O}); 5.08-5.13 \ (m, \text{H}-\text{C}(2')); 6.19 \ (d, J=5.9, 0.4 \text{ H}, \text{H}-\text{C}(1')); 6.21 \ (d, J=1.5, 0.6 \text{ H}, \text{H}-\text{C}(1')); 6.76-6.83 \ (m, 4 \text{ arom. H}); 7.19-7.44 \ (m, 9 \text{ arom. H}); 8.19, 8.20 \ (2s, 1 \text{ H}, \text{H}-\text{C}(2)); 8.59, 8.61 \ (2s, 1 \text{ H}, \text{H}-\text{C}(8)); 8.68 \ (br. s, \text{NH}-\text{C}(6)). \ ^{13}\text{C}-\text{NMR} \ (75 \text{ MHz}, \text{CDCl}_3); 20.2, 20.4 \ (2t, J(\text{C},\text{P})=7.1, \text{CH}_2\text{CN}); 24.3, 24.4, 24.5, 24.7 \ (4q, Me_2\text{CHN}); 25.7 \ (q, Me\text{CO}); 30.1 \ (t, \text{CH}_2); 32.3 \ (t, \text{BrCH}_2); 43.1, 43.4 \ (2d, J(\text{C},\text{P})=6.9, \text{Me}_2\text{CHN}); 55.3 \ (q, \text{MeO}); 58.1, 58.9 \ (2t, J(\text{C},\text{P})=13.9, \text{OCH}_2\text{CH}_2\text{CN}); 63.0, 66.0 \ (2t, \text{CH}_2\text{O}, \text{C}(5')); 71.1, 71.3, 71.7, 71.9, 83.8, 83.9 \ (6d, \text{C}(2'), \text{C}(3'), \text{C}(4')); 86.7, 86.8 \ (2d, \text{C}(1')); 87.0 \ (s, \text{Ar}_2\text{C}(\text{Ph})); 95.1, 95.2 \ (2t, \text{OCH}_2\text{O}); 113.2 \ (d, \text{arom. C}); 117.4, 117.6 \ (2s, \text{CN}); 122.2 \ (s, \text{C}(5)); 127.0 \ (s, \text{arom. C}); 127.9, 128.2, 128.3, 130.1, 130.2 \ (5d, \text{arom. C}); 135.5, 135.6 \ (2s, \text{arom. C}); 141.9 \ (d, \text{C}(8)); 144.4, 144.5 \ (2s, \text{arom. C}); 149.2 \ (s, \text{C}(4)); 151.2 \ (s, \text{C}(6)); 152.4 \ (d, \text{C}(2)); 158.6, 158.7 \ (s, \text{MeO}-\text{C}); 170.1 \ (s, \text{CO}). \ ^{31}\text{P}-\text{NMR} \ (202 \text{MHz}, \text{CDCl}_3); 150.9, 151.1. \text{FAB-MS}: 965 \ (16, [M+\text{H}]^+), 964 \ (38, M^+), 963 \ (11, [M+\text{H}]^+), 962 \ (37, M^+), 787 \ (34), 785 \ (35), 303 \ (100).$ 

N<sup>2</sup>-Acetyl-2'-O-[(3-bromopropoxy)methyl]-5'-O-(4,4'-dimethoxytrityl)guanosine 3'-(2-Cyanoethyl Diisopropylphosphoramidite) (31). According to the G.P. with 23 (990 mg, 1.27 mmol). CC (silica gel, hexane/ AcOEt  $(+2\% \text{ Et}_3\text{N}) 6:4) \rightarrow \text{AcOEt} (+2\% \text{ Et}_3\text{N})$  gave 31 (1.03 mg, 83%; 1:1 mixture of diastereoisomers). Pale yellow foam. TLC (hexane/AcOEt 1:9): R<sub>f</sub> 0.51. UV (MeCN): 281 (12900), 269 (11800), 238 (23700), 224 (19600). IR (CHCl<sub>3</sub>): 3385w, 3020s, 2973m, 2241w, 1806w, 1701s, 1608m, 1560m, 1509m, 1494w, 1412m, 1301w, 1253s, 1178m, 1126w, 1094m, 1034s, 1002w, 835w. H-NMR (300 MHz, CDCl<sub>2</sub>): 1.00 – 1.19 (m, (Me<sub>2</sub>CH)<sub>2</sub>N); 1.59, 1.74 (2s, MeCO); 1.86–1.94 (m, CH<sub>2</sub>); 2.31 (t, J = 6.2, 1 H, OCH<sub>2</sub>CH<sub>2</sub>CN); 2.72–2.78 (m, 1 H,  $OCH_2CH_2CN$ ); 3.17-3.19 (m, H-C(5')); 3.26-3.29 (m, BrCH<sub>2</sub>); 3.42-3.66 (m, H'-C(5'), CH<sub>2</sub>O,  $(Me_2CH)_2N$ ; 3.75, 3.76, 3.77 (3s, MeO); 4.23, 4.34 (2 br. s, H-C(4')); 4.52-4.61 (m, H-C(3')); 4.64-4.80  $(m, OCH_2O); 5.13-5.22 (m, H-C(2')); 5.86 (d, J=6.5, 0.5 H, H-C(1')); 5.98 (d, J=8.5, 0.5 H, H-C(1'));$ 6.77 – 6.82 (m, 4 arom. H); 7.19 – 7.55 (m, 9 arom. H); 7.79, 7.83 (2s, H – C(8)); 8.60, 8.46 (2 br. s, NH – C(2)); 11.88 (br. s, H–N(1)). <sup>13</sup>C-NMR 75 MHz, CDCl<sub>3</sub>): 20.2 (m, CH<sub>2</sub>CN); 23.5, 23.6 (2q, MeCO); 24.5, 24.6, 24.7  $(3q, Me_2CHN)$ ; 30.1 (t, CH<sub>2</sub>); 32.4, 32.5 (2t, BrCH<sub>2</sub>); 43.1, 45.4 (2d, J(C,P) = 12.2, Me<sub>2</sub>CHN); 55.4 (q, MeO);  $57.4(t, J(C,P) = 19.5, OCH_2CH_2CN); 59.0(t, J(C,P) = 13.4, OCH_2CH_2CN); 63.6, 63.8(2t, C(5')); 66.0, 66.2(2t, C(5')); 66.0(2t, C(5')); 66.0$  $CH_2O$ ); 70.7 (d, J(C,P) = 17.1); 71.8 (d, J(C,P) = 13.4); 76.4, 76.8 (2d); 84.5 (d, C(2'), C(3'), C(4')); 86.1, 88.0 (d, C(1')); 86.5, 86.8 (2s, Ar<sub>2</sub>C(Ph)); 95.0 (t, OCH<sub>2</sub>O); 113.4, 113.5 (2d, arom. C); 117.7, 118.3 (2s, CN); 122.2, 122.9 (2s, C(5)); 127.35, 127.42, 128.26, 128.33, 128.4, 130.3, 130.4 (7d, arom. C); 135.7, 135.9, 136.0, 136.4 (4s, arom. C); 138.3, 139.5 (2d, C(8)); 144.9, 145.3 (2s, arom. C); 147.1, 147.5 (2s, C(4)); 148.4, 148.7 (2s, C(2)); 155.8 (s, C(6)); 159.0 (s, MeO – C); 171.8, 171.9 (2s, CO). <sup>31</sup>P-NMR (121 MHz, CDCl<sub>3</sub>); 150.4, 150.8. FAB-MS:  $981 (16, [M+H]^+), 980 (38, M^+), 979 (10, [M+H]^+), 978 (36, M^+), 787 (40), 785 (38), 303 (100).$ 

N<sup>2</sup>-Acetyl-2'-O-[(3-bromopropoxy)methyl]-5'-O-(4,4'-dimethoxytrityl)cytidine 3'-(2-Cyanoethyl Diisopropylphosphoramidite) (32). According to the G.P., with 24 (566 mg, 0.77 mmol). CC (silica gel, hexane/AcOEt  $6:4 \rightarrow 2:8$ ) gave 32 (639 mg, 89%; 1:1 mixture of diastereoisomers). Pale yellow foam. TLC (hexane/AcOEt 1:9): R<sub>f</sub> 0.40. UV (MeCN): 304 (6600), 290 (5600), 283 (6100), 237 (27900), 226 (22700), IR (CHCl<sub>3</sub>): 3401w, 3011m, 2969m, 2361w, 1722m, 1664m, 1609w, 1555m, 1509m, 1482s, 1383w, 1307m, 1251m, 1179m, 1120m, 1035m, 980w, 830w.  $^{1}H$ -NMR (300 MHz, CDCl<sub>3</sub>): 0.99 - 1.29 (m, ( $Me_{2}$ CH)<sub>2</sub>N); 2.08 - 2.18 (m, CH<sub>2</sub>); 2.205, 2.213(2s, MeCO); 2.40, 2.61 (2t, J=6.2, OCH<sub>2</sub>CH<sub>2</sub>CN); 3.41–3.76 (m, 2H-C(5'), CH<sub>2</sub>O, BrCH<sub>2</sub>, OCH<sub>2</sub>CH<sub>2</sub>CN, $(Me_2CH)_2N)$ ; 3.81, 3.82 (2s, MeO); 4.22-4.53 (m, H-C(2'), H-C(3'), H-C(4')); 4.89-5.01 (m, OCH<sub>2</sub>O); 6.06 (s, 0.5 H, H-C(1')); 6.09 (d, J = 1.5, 0.5 H, H-C(1')); 6.80-6.98 (m, 4 arom. H); 6.95 (d, J = 7.6, 0.5 H, H-C(5); 7.00 (d, J=7.5, 0.5 H, H-C(5)); 7.23 – 7.44 (m, 9 arom. H); 8.42 (d, J=7.5, 0.5 H, H-C(6)); 8.52 (d, J = 7.8, 0.5 H, H - C(6)); 9.09, 9.13 (2 br, s, NH - C(4)). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): 20.2, 20.4 (2t, J(C,P) = 6.9,  $CH_2CN$ ); 24.4, 24.5, 24.6, 25.0 (4q,  $Me_2CHN$ , MeCO); 30.7 (t,  $CH_2$ ); 32.8 (t,  $BrCH_2$ ); 43.1, 43.3 (2d, J(C,P) = 10.0) 7.0,  $Me_2CHN$ ); 55.2 (q, MeO); 58.2 (t, J(C,P) = 15,  $OCH_2CH_2CN$ ); 60.6, 61.0, 65.2, 66.1 (4t,  $CH_2O$ , C(5')); 69.1, 76.6, 78.6, 79.1, 82.0, 86.4 (6d, C(2'), C(3'), C(4')); 87.08, 87.15 (2s, Ar<sub>2</sub>C (Ph)); 89.8 (d, C(1')); 94.9, 95.1 (2t, OCH<sub>2</sub>O); 96.4 (d, C(5)); 113.3 (d, arom. C); 117.4 (s, CN); 127.3, 128.0, 128.4, 130.1, 130.3 (5d, arom. C); 128.3, 135.1, 135.2, 135.3 (4s, arom. C); 144.1, 144.2 (2s, arom. C); 144.9 (d, C(6)); 155.2 (s, C(2)); 158.8 (s, MeO-C); 160.6 (s, C(4)); 170.1 (s, CO).  $^{31}P$ -NMR (202 MHz, CDCl<sub>3</sub>): 150.2, 151.3. FAB-MS: 941 (11,  $[M+H]^+$ ), 940 (18,  $M^+$ ), 939 (11,  $[M+H]^+$ ), 938 (17,  $M^+$ ), 303 (100).

Assembly of Oligonucleotides. Automated 1.0- $\mu$ mol syntheses ('trityl-off' mode) were carried out on a Gene Assembler (Pharmacia) by the following protocol: 1) 1.5 min detritylation with 4% CHCl<sub>2</sub>COOH in (CH<sub>2</sub>Cl)<sub>2</sub>; 2) 2.5 min coupling with the appropriate phosphoramidites (0.12 ml of 0.1 $\mu$  soln. in MeCN) and BnSTet (0.36 ml of a 0.35 $\mu$  soln. in MeCN); 3) 1 min capping with a 1:1 mixture of Ac<sub>2</sub>O/2,6-lutidine/THF 1:1:8 and 16% 1-methyl-1 $\mu$ -imidazole in THF; 4) 0.5 min oxidation with I<sub>2</sub>/H<sub>2</sub>O/pyridine/THF 2:2:20:75. According to the trityl-assay, the average coupling yields were 99.7% for standard DNA phosphoramidites, 99.3% for tomprotected phosphoramidites [9], and ca. 98% for phosphoramidite 32.

Oligonucleotides 37 and 38. The assembled, immobilized sequences were treated with 12M aq. MeNH<sub>2</sub> (0.5 ml) and 8M MeNH<sub>2</sub>/EtOH (0.5 ml). The suspension was shaken for 2 h at r.t. After centrifugation, the supernatant was evaporated, and the resulting crude oligonucleotides were purified by ion-exchange HPLC. After desalting of the pooled product-containing fractions,  $80~OD_{260\text{nm}}$  (60%) of 37 and 75  $OD_{260\text{nm}}$  (55%) of 38, resp., were obtained (Table 1).

Oligonucleotide 39. As described for 37 or 38, but after the MeNH<sub>2</sub> treatment, the residue was treated with  $1 \text{MBu}_4 \text{NF} \cdot 3 \text{H}_2 \text{O/THF} (0.5 \text{ ml})$ ; after 12 h at r.t., 1 M aq.  $Tris \cdot \text{HCl} (pH 7.4; 0.5 \text{ ml})$  was added, and the clear soln. was desalted on a Sephadex G-10 column (H<sub>2</sub>O as eluent). The product-containing fractions were collected, evaporated, and purified by ion-exchange chromatography. After desalting of the pooled product-containing fractions,  $40 OD_{260 \text{nm}} (30\%)$  of 39 were obtained (Table 1).

Oligonucleotides **40** and **41**. As described for **37** and **38**, but only with 1/10 of the solid support **35** or **36** (ca. 0.1 µmol each), resp. After ion-exchange chromatography and desalting of the pooled product-containing fractions,  $6 OD_{260nm}$  (45%) of **40** and  $5 OD_{260nm}$  (40%) of **41**, resp., were obtained (Table 1).

Oligonucleotides 49–53. Under Ar, ca. 80% of the solid support 35 or 36 (ca. 0.8  $\mu$ mol each) was shaken with 1m thioglycolic acid/2m  $^{1}$ Pr<sub>2</sub>NEt/DMF (1 ml). After 14 h at r.t., the solid support was collected by centrifugation and washed 3 × with DMF ( $\rightarrow$  35 and 36, resp.). About 1/3 of the solid support (ca. 0.25  $\mu$ mol each) was treated with a soln. of HOBT (14 mg, 0.1 mmol), TBTU (32 mg, 0.1 mmol),  $^{1}$ Pr<sub>3</sub>NEt (34  $\mu$ l, 0.2 mmol), and 0.8 mmol of an amine (MeNH<sub>2</sub>, histamine, or L-isoleucine allyl ester) in DMF. The suspension was shaken for 4 h at r.t., collected by centrifugation, and washed 2 × with DMF and EtOH, resp. Deprotection and purification were carried out as described for 37 and 38. From 35, 15  $OD_{260nm}$  (40%) of 49, 12  $OD_{260nm}$  (35%) of 51, and 9  $OD_{260nm}$  (25%) of 53 were obtained with MeNH<sub>2</sub>, histamine, and L-isoleucine allylester, resp. (*Table 1*). From 36, 14  $OD_{260nm}$  (40%) of 50 and 11  $OD_{260nm}$  (30%) of 53 were obtained with MeNH<sub>2</sub> and histamine, resp. (*Table 1*).

## REFERENCES

- A. E. Ferentz, G. L. Verdine, J. Am. Chem. Soc. 1991, 113, 4000; C. M. Harris, L. Zhou, E. A. Strand, T. M. Harris, J. Am. Chem. Soc. 1991, 113, 4328; A. M. Macmillan, G. L. Verdine, Tetrahedron 1991, 47, 2603; Y. Z. Xu, Q. Zheng, P. F. Swann, J. Org. Chem. 1992, 57, 3839; C. R. Allerson, S. L. Chen, G. L. Verdine, J. Am. Chem. Soc. 1993, 115, 12583; N. Schmid, J.-P. Behr, Tetrahedron Lett. 1995, 36, 1447 1450; Y.-Z. Xu, Tetrahedron 1996, 52, 10737.
- [2] J. D. Kahl, M. M. Greenberg, J. Am. Chem. Soc. 1999, 121, 597; K. Shinozuka, S. Kohgo, H. Ozaki, H. Sawai, Chem. Commun. 2000, 59.
- [3] X. Wu, S. Pitsch, Bioconjugate Chem. 1999, 6, 921.
- [4] X. Wu, S. Pitsch, Nucleic Acids Res. 1998, 19, 4315.
- [5] S. Pitsch, Helv. Chim. Acta 1997, 80, 2286.
- [6] G. H. Hakimelahi, Z. A. Proba, K. K. Ogilvie, Can. J. Chem. 1982, 60, 1106.
- [7] M. J. Gait, 'Oligonucleotide Synthesis a Practical Approach', IRL Press, Oxford, 1984.
- [8] P. Garner, S. Ramakanth, J. Org. Chem. 1988, 53, 1294; M. J. Robins, R. Zhou, Z. Guo, S. F. Wuuk, J. Org. Chem. 1996, 61, 9207.
- [9] S. Pitsch, P. A. Weiss, X. Wu, D. Ackermann, T. Honegger, Helv. Chim. Acta 1999, 82, 1753.
- [10] J. E. Corrie, G. P. Reid, D. R. Trentham, M. B. Hursthouse, M. A. Mazid, J. Chem. Soc., Perkin Trans. 1 1992, 1015; M. E. Schwartz, R. R. Breaker, G. T. Asteriadis, J. S. deBear, G. R. Gough, Bioorg. Med. Chem. Lett. 1992, 2, 1019.
- [11] T. Benneche, L.-L. Gundersen, K. Undheim, Acta Chem. Scand., Sect. B 1988, 42, 384.
- [12] U. Pieles, W. Zürcher, M. Schär, H. E. Moser, Nucleic Acids Res. 1993, 21, 3191.
- [13] L. A. Marky, K. J. Breslauer, Biopolymers 1987, 26, 1601.
- [14] P. Lubini, W. Zürcher, M. Egli, Chem. Biol. 1994, 1, 39.
- [15] H. Hrebabecky, J. Farkas, in 'Nucleic Acid Chemistry', Vol. 1, J. Wiley & Sons, New York, 1978.
- [16] R. K. Ness, 'Synthetic Procedures in Nucleic Acid Chemistry', Vol. 1, Eds. W. W. Zorbach and R. S. Tipson, Wiley & Sons, New York, 1968.